Fukushima One Year On: Many Revelations, Few Surprises

Satellite image of Fukushima Daiichi showing damage on 3/14/11. (photo: digitalglobe)

One year on, perhaps the most surprising thing about the Fukushima crisis is that nothing is really that surprising. Almost every problem encountered was at some point foreseen, almost everything that went wrong was previously discussed, and almost every system that failed was predicted to fail, sometimes decades earlier. Not all by one person, obviously, not all at one time or in one place, but if there is anything to be gleaned from sorting through the multiple reports now being released to commemorate the first anniversary of the Tohoku earthquake and tsunami–and the start of the crisis at Fukushima Daiichi–it is that, while there is much still to be learned, we already know what is to be done. . . because we knew it all before the disaster began.

This is not to say that any one person–any plant manager, nuclear worker, TEPCO executive, or government official–had all that knowledge on hand or had all the guaranteed right answers when each moment of decision arose. We know that because the various timelines and reconstructions now make it clear that several individual mistakes were made in the minutes, hours and days following the dual natural disasters. Instead, the analysis a year out teaches us that any honest examination of the history of nuclear power, and any responsible engagement of the numerous red flags and warnings would have taken the Fukushima disasters (yes, plural) out of the realm of “if,” and placed it squarely into the category of “when.”

Following closely the release of findings by the Rebuild Japan Foundation and a report from the Union of Concerned Scientists (both discussed here in recent weeks), a new paper, “Fukushima in review: A complex disaster, a disastrous response,” written by two members of the Rebuild Japan Foundation for the Bulletin of the Atomic Scientists, provides a detailed and disturbing window on a long list of failures that exacerbated the problems at Japan’s crippled Fukushima Daiichi facility. Among them, they include misinterpreting on-site observations, the lack of applicable protocols, inadequate industry guidelines, and the absence of both a definitive chain of command and the physical presence of the supposed commanders. But first and foremost, existing at the core of the crisis that has seen three reactor meltdowns, numerous explosions, radioactive contamination of land, air and sea, and the mass and perhaps permanent evacuation of tens of thousands of residents from a 20 kilometer exclusion zone, is what the Bulletin paper calls “The trap of the absolute safety myth”:

Why were preparations for a nuclear accident so inadequate? One factor was a twisted myth–a belief in the “absolute safety” of nuclear power. This myth has been propagated by interest groups seeking to gain broad acceptance for nuclear power: A public relations effort on behalf of the absolute safety of nuclear power was deemed necessary to overcome the strong anti-nuclear sentiments connected to the atomic bombings of Hiroshima and Nagasaki.

Since the 1970s, disaster risk has been deliberately downplayed by what has been called Japan’s nuclear mura (“village” or “community”)–that is, nuclear advocates in industry, government, and academia, along with local leaders hoping to have nuclear power plants built in their municipalities. The mura has feared that if the risks related to nuclear energy were publicly acknowledged, citizens would demand that plants be shut down until the risks were removed. Japan’s nuclear community has also feared that preparation for a nuclear accident would in itself become a source of anxiety for people living near the plants.

The power of this myth, according to the authors, is strong. It led the government to actively cancel safety drills in the wake of previous, smaller nuclear incidents–claiming that they would cause “unnecessary anxiety”–and it led to a convenient classification for the events of last March 11:

The word used then to describe risks that would cause unnecessary public anxiety and misunderstanding was “unanticipated.” Significantly, TEPCO has been using this very word to describe the height of the March 11 tsunami that cut off primary and backup power to Fukushima Daiichi.

Ignoring for this moment the debate about what cut off primary power, the idea that the massive size of the tsunami–not to mention what it would do to the nuclear plant–was unanticipated is, as this paper observes, absurd. Studies of a 9th Century tsunami, as well as an internal report by TEPCO’s own nuclear energy division, showed there was a definite risk of large tsunamis at Fukushima. TEPCO dismissed these warnings as “academic.” The Japanese government, too, while recommending nuclear facilities consider these findings, did not mandate any changes.

Instead, both the industry and the government chose to perpetuate the “safety myth,” fearing that any admission of a need to improve or retrofit safety systems would result in “undue anxiety”–and, more importantly, public pressure to make costly changes.

Any of that sound familiar?

“No one could have possibly anticipated. . .” is not just the infamous Bush administration take on the attacks of 9/11/2001, it has become the format for many of the current excuses on why a disaster like Fukushima could happen once, and why little need now be done to make sure it doesn’t happen again.

In fact, reading the BAS Fukushima review, it is dishearteningly easy to imagine you are reading about the state of the American nuclear reactor fleet. Swapping in places like Three Mile Island, Palisades, Browns Ferry, Davis-Besse, San Onofre, Diablo Canyon, Vermont Yankee, and Indian Point for the assorted Japanese nuclear power plants is far too easy, and replacing the names of the much-maligned Japanese regulatory agencies with “Nuclear Regulatory Commission” and “Department of Energy” is easier still.

As observed a number of times over the last year, because of unusual events and full-on disasters at many of the aging nuclear plants in the US, American regulators have a pretty good idea of what can go wrong–and they have even made some attempts to suggest measures should be taken to prevent similar events in the future. But industry pressure has kept those suggestions to a minimum, and the cozy relationship between regulators and the regulated has diluted and dragged out many mandates to the point where they serve more as propaganda than prophylaxis.

Even with the Fukushima disaster still visible and metastasizing, requiring constant attention from every level of Japanese society and billions of Yen in emergency spending, even with isotopes from the Daiichi reactors still showing up in American food, air and water, and even with dozens of US reactors operating under circumstances eerily similar to pre-quake Fukushima, the US Nuclear Regulatory Commission has treated its own post-Fukushima taskforce recommendations with a pointed lack of urgency. And the pushback from the nuclear industry and their bought-and-paid-for benefactors in the government at the mere hint of new regulations or better enforcement indicates that America might have its own safety myth trap–though, in the US, it is propagated by the generations-old marketing mantra, “Clean, safe and too cheap to meter.”

Mythical, too, is the notion that the federal government has the regulatory infrastructure or political functionality to make any segment of that tripartite lie ring closer to true. From NRC chairman Gregory Jaczko’s bizarre faith in a body that has failed to act on his pre-Fukushima initiatives while actively conspiring to oust him, to the Union of Concerned Scientists’ assuming a regulatory “can opener,” the US may have a bigger problem than the absolute safety myth, and that would be the myth of a government with the will or ability to assure that safety.

Which, of course, is more than a shame–it’s a crime. With so many obvious flaws in the technology–from the costs of mining, importing and refining fuel to the costs of building an maintaining reactors, from the crisis in spent fuel storage to the “near misses” and looming disasters at aging facilities–with so many other industrialized nations now choosing to phase out nuclear and ramp up renewables, and with the lessons of Fukushima now so loud and clear, the path forward for the US should not be difficult to delineate.

Nuclear power is too dirty, too dangerous and too expensive to justify any longer. No one in America should assume that the willpower or wherewithal to manage these problems would magically appear when nothing sufficient has materialized in the last fifty years. Leaders should not mistake luck for efficacy, nor should they pretend birds of a feather are unrelated black swans. They know better, and they knew all they needed to know long before last year’s triple meltdown.

Nuclear is not in a “renaissance,” it is in its death throes. Now is the time to cut financial losses and guard against more precious ones. The federal government should take the $54.5 billion it pledged to the nuclear industry and use it instead to increase efficiency, conservation, and non-fissile/non-fossil energy innovation.

But you already knew that.

* * *

Extra Credit:

Compare and contrast this 25-minute video from Al Jazeera and the Center for Investigative Reporting with what you read in the Bulletin of the Atomic Scientists report mentioned above. For that matter, contrast it with the two longer but somehow less rigorous videos from Frontline, which were discussed here and here.

Also, there are events all over the globe this weekend to commemorate the first anniversary of the Tohoku earthquake and the nuclear crisis it triggered. To find an event in your area, see this list from Beyond Nuclear and the Freeze our Fukushimas Campaign.

The Party Line – September 9, 2011: Shaken, But Still Not Stirred

Sunday, September 11, will of course be the tenth anniversary of a tragedy that fundamentally changed America in ways we are still trying to understand. But this 9/11 is also a day for other anniversaries, ones that will likely get little, if any, recognition in the US.

In 1985, for instance, September 11 saw a Keystone Kops-like collection of miscues during a test of the remote shutdown protocols at the Limerick Generating Station, a boiling water nuclear reactor outside of Philadelphia. During the shutdown, a valve on a cooling system failed to open, and attempts to manually open the valve were met by a locked door, and a call for a key, which, after a 15-minute wait, turned out to be the wrong key. Once the proper key was found and the door was opened, the operators found the valve’s hand wheel chained and padlocked to prevent accidental opening. Those keys were in the abandoned control room. Bolt cutters had to be used before the operators could finally open the valve.

All that time, the reactor core’s temperature was increasing. Fortunately, the test was done during startup, when decay heat is relatively low, so control rods were able to slow the reaction enough to provide time to overcome the multiple barriers to opening the valve. Had the plant been operating at full power when this series of problems occurred, the outcome would likely have not been so rosy.

September 11 will also mark six months since the massive earthquake and tsunami that struck northern Japan triggered a series of cataclysmic failures at the Fukushima Daiichi nuclear complex. That accident provides no amusing anecdotes or happy endings, but those horrible events should provide a loud wakeup call and numerous object lessons for nuclear power programs across the globe.

As previously noted, the Japanese nightmare and domestic political realities have spurred German Prime Minister Angela Merkel to announce a rather rapid phase out of her country’s nuclear plants. The Japanese government, too, has spoken of turning away from nuclear power and toward renewable alternatives.

But here in the United States, six months on from Japan’s quake, there are no such proclamations or pledges–if anything, quite the contrary–and almost no movement on even the most incremental of recommendations.

In the face of lessons still not learned, a trio of nuclear experts gathered in Washington, DC on September 8 to highlight key concerns that still have not been addressed six months after the start of the world’s worst nuclear accident. Included on the list are several issues discussed in this space since the Fukushima quake (this is a partial and edited list–please use the link for more concerns and more explanation):

The U.S. regulatory response since Fukushima has been inadequate. “Six months after Fukushima, it seems clear that the U.S. is not going to undertake the type of fundamental, no-holds-barred look at its nuclear regulatory practices that followed the much less serious accident at Three Mile Island some 30 years ago.”

America should avoid post-9/11 mistakes in tightening reactor safety standards. “In responding to Fukushima by issuing orders, the NRC should not make the same mistakes as it did following 9/11, when industry stonewalling delayed implementation of critical security measures for many years. Even today, some post 9/11 security upgrades have not been completed at numerous plants. . . . The U.S. must respond to Fukushima in a much more comprehensive way or it may soon face an accident even worse than Fukushima.”

The U.S. was warned of Fukushima-style problems but failed to act … and is still failing to do so. “U.S. reactors have some of the shortcomings of the Fukushima plants. Furthermore, citizen groups and scientists had tried to call one of these – spent fuel pool vulnerability — to Nuclear Regulatory Commission attention during the last decade. The NRC dismissed these efforts. . . . Without a root cause analysis of its own failure to heed the now validated warnings about spent fuel pools, the NRC may patch the technical problems revealed by Fukushima, but it won’t fix the underlying shortcomings that allow defects to persist until catastrophic events rather than regulatory vigilance force the nuclear industry and the public to face up to them.”

Emergency planning zones in the U.S. must be expanded. “In contrast to the [NRC] Task Force conclusions, we believe that emergency planning zones should be expanded, certain hydrogen control measures should be immediately enforced and spent fuel transfer to dry casks should be accelerated. Also, the safety margins of new reactors need to be reassessed.”

The recent East Coast earthquake should spur more NRC safety analysis. “The earthquake near the North Anna nuclear plant, which reportedly exceeded the plant’s seismic design basis, reinforces the urgency of the NRC Fukushima task force’s recommendation that all plants immediately be reviewed for their vulnerability to seismic and flooding hazards based on the best available information today.”

To that last point, as noted before, the earthquake that struck Mineral, VA in late August should have moved US nuclear regulators to quickly adopt the recommendations of the Fukushima task force. Well, the quake doesn’t seem to have moved the NRC much, but it did move some things, like most of the 117-ton dry storage casks at the North Anna facility. . . and, as we now have learned, pretty much everything else there:

Last month’s record earthquake in the eastern United States may have shaken a Virginia nuclear plant twice as hard as it was designed to withstand, a spokesman for the nuclear safety regulator said on Thursday.

Dominion Resources told the regulator that the ground under the plant exceeded its “design basis” — the first time an operating U.S. plant has experienced such a milestone. . . .

That a facility experienced such a milestone is now known because, over two weeks after the fact, data from the so-called “shake plates” has finally been released (almost a week after it was expected):

“We are currently thinking that at the higher frequencies, the peak acceleration was around 0.26″ g, which is a unit of gravity that measures the impact of shaking on buildings, said Scott Burnell, an NRC spokesman.

The plant was designed to withstand 0.12 g of horizontal ground force for parts that sit on rock, and 0.18 g for parts that sit on soil, Burnell said.

Dominion’s sensors recorded average horizontal ground force of 0.13 g in an east-west direction and 0.175 g in a north-south direction, officials said.

The apparent discrepancy seems to stem from the distance between instruments used by the US Geological Survey and those cited by North Anna’s operator, Dominion, but even taking the smaller numbers, the design limits of the plant were exceeded.

Dominion officials have been quick to point out that even though some things have moved and some structures show cracks, those changes are merely cosmetic and in no way dangerous. But nuclear engineer John H. Bickel says that vessels and pipes are not the first things to go in a quake:

[A]n analysis of plants hit by earthquakes had shown that the most vulnerable components were ceramic insulators on high-voltage lines that supply the plants with power and electrical relays, which resemble industrial-strength circuit-breakers and switches.

Even if the relays are not damaged, they might be shaken so that they change positions, cutting off the flow of electricity or allowing it to flow without any command from an operator.

As previously noted (with more than a hint of irony), in order to safely generate electrical power, nuclear plants need an uninterrupted supply of electrical power. Without electricity, cooling systems and important monitors in both the reactors and spent fuel storage pools cannot function. Without effective cooling, nuclear facilities are looking at a series of disasters like the ones encountered at Fukushima Daiichi. That the most quake-vulnerable components directly affect a nuclear plant’s power supply is yet another data point underscoring the urgent need to review and enhance seismic safety at US facilities.

But even before that nation-wide examination can take place, the damage to the shaken North Anna plant needs to be surveyed and analyzed so that Dominion might restart its reactors. What does Dominion need to show in order to get the thumbs up, what criteria need to be met, what repairs or retrofits should be required? To paraphrase the head of the NRC: Who knows?

In an interview last week, NRC Chairman Gregory Jaczko told Reuters it was unclear what the plant would need to show to resume operations because it is the first time an operating plant has sustained a beyond-design-basis quake.

As Hurricane Irene revealed the lack of national guidelines for what to do in the face of an approaching storm, the Virginia earthquake has shown that the United States has no regulatory regime for learning, analyzing, or acting on data from events that exceed the often-negotiated-down design parameters of its nuclear facilities.

In fact, the NRC does not even have a post-quake inspection protocol. Inspections of North Anna are being done according to procedural guidelines drawn up by the Electric Power Research Institute, “a nonprofit utility consortium that has inspected dozens of industrial plants hit by earthquakes around the world.”

Yes, the nuclear industry has written its own post-event checklist, and, in the absence of any other standard, is left alone to use it.

That sort of self-policing leads to some noteworthy analysis, like this from a nuclear industry attorney: “You shake something really hard, and it’s not designed to be shaken that hard — it doesn’t mean that it’s broken.”

But there is something even more disturbing, if that is possible, propagated by the weak regulations and weak-willed regulators. It leaves space for arguments like this one from that same industry lawyer:

The incident helps make the case for new-generation nuclear plants, which have additional safety features. . . . “If you can have a car from 2011 vs. a car from 1978, what are you going to put your toddler in?”

Beyond the fact that no one is actually suggesting the 1978 plants get traded in for newer models (just augmented with them), cars have to compete for consumer dollars in a way that nuclear plants do not. Nuclear plants could not be built, fueled, operated or maintained without massive subsidies, loan guarantees, and infrastructure commitments from the federal government.

Also of note, a 2011 automobile is safer and more efficient than a 1978 model because of government regulation. The auto industry has fought improvements like mandatory airbags, three-point restraints, and CAFE standards, but a strong government imposed those requirements anyway. And your toddler is safer in that car because the Consumer Product Safety Commission reviews the design of child car seats, and laws mandate their use.

Where the comparison does work, however, is that both represent a false choice. Just as a car is not the only way to transport a toddler, nuclear plants are not the only means by which to generate power. And in 2011, there are many more choices, and many safer choices, than there were in 1978.

Which recalls the important contrast between a country such as Germany–which, faced with a restive electorate and lessons to be learned from Japan’s misfortune, has made a commitment to not just trade in nuclear but trade up to renewable alternatives–and the US, where corporate influence and politics as usual have left the government with seemingly few options beyond willful ignorance and calcification.

Even without recognition of the Japan quake’s semi-anniversary, September 11 will probably be a tense day for most Americans, especially those with personal connections to the events of ten years ago. But while remembrance will be hard, it will mostly be so because of an event now relegated to history.

Residents of Japan, still living with an ongoing and ever-evolving threat, cannot so neatly define their anguish. And if there is a message to be found in this coincidental concurrence of dates, it perhaps springs from there. While Americans can debate what could have been done to prevent the attacks of 9/11/2001, it is a debate held in hindsight. For the Japanese dealing with the aftermath of their disaster, hindsight still seems like a luxury to be enjoyed very far in the future.

But, for the United States, a debate about what can be done to prevent a Fukushima-like disaster here is theoretically blessed, both because it is a debate that can be had before the next crisis, and because it is a debate that can be informed by events. And experience, science, economics and common sense are all pretty clear on what needs to be done.