The Brief Wondrous Life (and Long Dangerous Half-Life) of Strontium-90

Tooth to Science button2At roughly 5:30 in the morning on July 16, 1945, an implosion-design plutonium device, codenamed “the gadget,” exploded over the Jornada del Muerto desert in south-central New Mexico with a force equivalent to about 20,000 tons of TNT. It was the world’s first test of an atomic bomb, and as witnesses at base camp some ten miles away would soon relay to US President Harry Truman, the results were “satisfactory” and exceeded expectations. Within weeks, the United States would use a uranium bomb of a different design on the Japanese city of Hiroshima, and three days after that, a plutonium device similar to the gadget was dropped on Nagasaki, about 200 miles to the southwest.

Though Hiroshima and Nagasaki are the only instances where atomic weapons were used against a wartime enemy, between 1945 and 1963, the world experienced hundreds upon hundreds of nuclear weapons tests, the great majority of which were above ground or in the sea–in other words, in the atmosphere. The US tested atom and hydrogen bombs in Nevada, at the Nevada Test Site, and in the Pacific Ocean, on and around the Marshall Islands, in an area known as the Pacific Proving Grounds. After the Soviet Union developed its own atomic weapon in 1949, it carried out hundreds of similar explosions, primarily in Kazakhstan, and the UK performed more than 20 of its own atmospheric nuclear tests, mostly in Australia and the South Pacific, between 1952 and 1958.

Though military authorities and officials with the US Atomic Energy Commission initially downplayed the dispersal and dangers of fallout from these atmospheric tests, by the early 1950s, scientists in nuclear and non-nuclear countries alike began to raise concerns. Fallout from atmospheric tests was not contained simply to the blast radius or a region near the explosion, instead the products of fission and un-fissioned nuclear residue were essentially vaporized by the heat and carried up into the stratosphere, sweeping across the globe, and eventually returning to earth in precipitation. A host of radioactive isotopes contaminated land and surface water, entering the food chain through farms and dairies.

The tale of the teeth

In order to demonstrate that fallout was widespread and had worked its way into the population, a group of researchers, headed by Dr. Barry Commoner and Drs. Louise and Eric Reiss, founded the Baby Tooth Survey under the auspices of Washington University (where Commoner then taught) and the St. Louis Citizens’ Committee for Nuclear Information. The tooth survey sought to track strontium-90 (Sr-90), a radioactive isotope of the alkaline earth metal strontium, which occurs as a result–and only as a result–of nuclear fission. Sr-90 is structurally similar to calcium, and so, once in the body, works its way into bones and teeth.

While harvesting human bones was impractical, researchers realized that baby teeth should be readily available. Most strontium in baby teeth would transfer from mother to fetus during pregnancy, and so birth records would provide accurate data about where and when those teeth were formed. The tooth survey collected baby teeth, initially from the St. Louis area, eventually from around the globe, and analyzed them for strontium.

By the early ’60s, the program had collected well over a quarter-million teeth, and ultimately found that children in St. Louis in 1963 had 50 times more Sr-90 in them than children born in 1950. Armed with preliminary results from this survey and a petition signed by thousands of scientists worldwide, Dr. Commoner successfully lobbied President John F. Kennedy to negotiate and sign the Partial Test Ban Treaty, halting atmospheric nuclear tests by the US, UK and USSR. By the end of the decade, strontium-90 levels in newly collected baby teeth were substantially lower than the ’63 samples.

The initial survey, which ended in 1970, continues to have relevance today. Some 85,000 teeth not used in the original project were turned over to researchers at the Radiation and Public Health Project (RPHP) in 2001. The RPHP study, released in 2010, found that donors from the Baby Tooth Survey who had died of cancer before age 50 averaged over twice the Sr-90 in their samples compared with those who had lived past their 50th birthday.

But the perils of strontium-90–or, indeed, a host of radioactive isotopes that are strontium’s travel companions–did not cease with the ban on atmospheric nuclear tests. Many of the hazards of fallout could also be associated with the radiological pollution that is part-and-parcel of nuclear power generation. The controlled fission in a nuclear reactor produces all of the elements created in the uncontrolled fission of a nuclear explosion. This point was brought home by the RPHP work, when it found strontium-90 was 30- to 50-percent higher in baby teeth collected from children born in “nuclear counties,” (PDF) the roughly 40 percent of US counties situated within 100 miles of a nuclear power plant or weapons lab.

Similar baby teeth research has been conducted over the last 30 years in Denmark, Japan and Germany, with measurably similar results. While Sr-90 levels continued to decrease in babies born through the mid 1970s, as the use of nuclear power starts to spread worldwide, that trend flattens. Of particular note, a study conducted by the German section of the International Physicians for the Prevention of Nuclear War (winner of the 1985 Nobel Peace Prize) found ten-times more strontium-90 in the teeth of children born after the 1986 Chernobyl nuclear disaster when compared with samples from 1983.

While radioactive strontium itself can be linked to several diseases, including leukemia and bone cancers, Sr-90, as mentioned above, is but one of the most measurable of many dangerous isotopes released into the environment by the normal, everyday operation of nuclear reactors, even without the catastrophic discharges that come with accidents and meltdowns. Tritium, along with radioactive variants of iodine, cesium and xenon (to name just a few) can often be detected in elevated levels in areas around nuclear facilities.

Epidemiological studies have shown higher risks of breast and prostate cancers for those living in US nuclear counties. But while the Environmental Protection Agency collects sporadic data on the presence of radioactive isotopes such as Sr-90, the exact locations of the sampling sites are not part of the data made available to the general public. Further, while “unusual” venting of radioactive vapor or the dumping of contaminated water from a nuclear plant has to be reported to the Nuclear Regulatory Commission (and even then, it is the event that is reported, not the exact composition of the discharge), the radio-isotopes that are introduced into the environment by the typical operation of a reactor meet with far less scrutiny. In the absence of better EPA data and more stringent NRC oversight, studies like the Baby Tooth Survey and its contemporary brethren are central to the public understanding of the dangers posed by the nuclear power industry.

June and Sr-90: busting out all over

As if to underscore the point, strontium-90 served as the marker for troubling developments on both sides of the Pacific just this June.

In Japan, TEPCO–still the official operator of Fukushima Daiichi–revealed it had found Sr-90 in groundwater surrounding the crippled nuclear plant at “very high” levels. Between December 2012 and May 2013, levels of strontium-90 increased over 100-fold, to 1,000 becquerels per liter–33 times the Japanese limit for the radioactive isotope.

The samples were taken less than 100 feet from the coast. From that point, reports say, the water usually flows out to the Pacific Ocean.

Beyond the concerns raised by the affects of the strontium-90 (and the dangerously high amounts of tritium detected along with it) when the radioactive contamination enters the food chain, the rising levels of Sr-90 likely indicate other serious problems at Fukushima. Most obviously, there is now little doubt that TEPCO has failed to contain contaminated water leaking from the damaged reactor buildings–contrary to the narrative preferred by company officials.

But skyrocketing levels of strontium-90 could also suggest that the isotope is still being produced–that nuclear fission is still occurring in one or more of the damaged reactor cores. Or even, perhaps, outside the reactors, as the corium (the term for the molten, lava-like nuclear fuel after a meltdown) in as many as three units is believed to have melted through the steel reactor containment and possibly eroded the concrete floor, as well.

An ocean away, in Washington state, radiological waste, some of which dates back to the manufacture of those first atom bombs, sits in aging storage tanks at the Hanford Nuclear Reservation–and some of those tanks are leaking.

In truth, tanks at Hanford, considered by many the United States’ most contaminated nuclear site, have been leaking for some time. But the high-level radioactive waste in some of the old, single-wall tanks had been transferred to newer, double-walled storage, which was supposed to provide better containment. On June 20, however, the US Department of Energy reported that workers at Hanford detected radioactive contamination–specifically Sr-90–outside one of the double-walled tanks, possibly suggesting a breach. The predominant radionuclides in the 850,000-gallon tank are reported to be strontium-90 and cesium-137.

The tank, along with hundreds of others, sits about five miles from the Columbia River, water source for much of the region. Once contamination leaks from the tanks, it mixes with ground water, and, in time, should make its way to the river. “I view this as a crisis,” said Tom Carpenter, executive director of the watchdog group Hanford Challenge, “These tanks are not supposed to fail for 50 years.”

Destroyer of worlds

In a 1965 interview, J. Robert Oppenheimer, the Manhattan Project’s science director who was in charge of the Los Alamos facility that developed the first atomic bombs, looked back twenty years to that July New Mexico morning:

We knew the world would not be the same. A few people laughed, a few people cried. Most people were silent. I remembered the line from the Hindu scripture, the Bhagavad-Gita; Vishnu is trying to persuade the Prince that he should do his duty and, to impress him, takes on his multi-armed form and says, “Now I am become Death, the destroyer of worlds.” I suppose we all thought that, one way or another.

“We knew the world would not be the same.” Oppenheimer was most likely speaking figuratively, but, as it turns out, he also reported a literal truth. Before July 16, 1945, there was no strontium-90 or cesium-137 in the atmosphere–it simply did not exist in nature. But ever since that first atomic explosion, these anthropogenic radioactive isotopes have been part of earth’s every turn.

Strontium-90–like cesium-137 and a catalog of other hazardous byproducts of nuclear fission–takes a long time to decay. The detritus of past detonations and other nuclear disasters will be quite literally with us–in our water and soil, in our tissue and bone–for generations. These radioactive isotopes have already been linked to significant suffering, disease and death. Their danger was acknowledged by the United States when JFK signed the 1963 Test Ban Treaty. Now would be a good time to acknowledge the perspicacity of that president, phase out today’s largest contributors of atmospheric Sr-90, nuclear reactors, and let the sun set on this toxic metal’s life.

 

A version of this story previously appeared on Truthout; no version may be reprinted without permission.

Something Fishy: CRS Report Downplays Fukushima’s Effect on US Marine Environment

japan

(photo: JanneM)

Late Thursday, the United States Coast Guard reported that they had successfully scuttled the Ryou-Un Maru, the Japanese “Ghost Ship” that had drifted into US waters after being torn from its moorings by the tsunami that followed the Tohoku earthquake over a year ago. The 200-foot fishing trawler, which was reportedly headed for scrap before it was swept away, was seen as potentially dangerous as it drifted near busy shipping lanes.

Coincidentally, the “disappearing” of the Ghost Ship came during the same week the Congressional Research Service (CRS) released its report on the effects of the Fukushima Daiichi nuclear disaster on the US marine environment, and, frankly, the metaphor couldn’t be more perfect. The Ryou-Un Maru is now resting at the bottom of the ocean–literally nothing more to see there, thanks to a few rounds from a 25mm Coast Guard gun–and the CRS hopes to dispatch fears of the radioactive contamination of US waters and seafood with the same alacrity.

But while the Ghost Ship was not considered a major ecological threat (though it did go down with around 2,000 gallons of diesel fuel in its tanks), the US government acknowledges that this “good luck ship” (a rough translation of its name) is an early taste of the estimated 1.5 million tons of tsunami debris expected to hit North American shores over the next two or three years. Similarly, the CRS report (titled Effects of Radiation from Fukushima Dai-ichi on the U.S. Marine Environment [PDF]) adopts an overall tone of “no worries here–its all under control,” but a closer reading reveals hints of “more to come.”

Indeed, the report feels as it were put through a political rinse cycle, limited both in the strength of its language and the scope of its investigation. This tension is evident right from the start–take, for example, these three paragraphs from the report’s executive summary:

Both ocean currents and atmospheric winds have the potential to transport radiation over and into marine waters under U.S. jurisdiction. It is unknown whether marine organisms that migrate through or near Japanese waters to locations where they might subsequently be harvested by U.S. fishermen (possibly some albacore tuna or salmon in the North Pacific) might have been exposed to radiation in or near Japanese waters, or might have consumed prey with accumulated radioactive contaminants.

High levels of radioactive iodine-131 (with a half-life of about 8 days), cesium-137 (with a half-life of about 30 years), and cesium-134 (with a half-life of about 2 years) were measured in seawater adjacent to the Fukushima Dai-ichi site after the March 2011 events. EPA rainfall monitors in California, Idaho, and Minnesota detected trace amounts of radioactive iodine, cesium, and tellurium consistent with the Japanese nuclear incident, at concentrations below any level of concern. It is uncertain how precipitation of radioactive elements from the atmosphere may have affected radiation levels in the marine environment.

Scientists have stated that radiation in the ocean very quickly becomes diluted and would not be a problem beyond the coast of Japan. The same is true of radiation carried by winds. Barring another unanticipated release, radioactive contaminants from Fukushima Dai-ichi should be sufficiently dispersed over time that they will not prove to be a serious health threat elsewhere, unless they bioaccumulate in migratory fish or find their way directly to another part of the world through food or other commercial products.

Winds and currents have “the potential” to transport radiation into US waters? Winds–quite measurably–already have, and computer models show that currents, over the next couple of years, most certainly will.

Are there concentrations of radioisotopes that are “below concern?” No reputable scientist would make such a statement. And if monitors in the continental United States detected radioactive iodine, cesium and tellurium in March 2011, then why did they stop the monitoring (or at least stop reporting it) by June?

The third paragraph, however, wins the double-take prize. Radiation would not be a problem beyond the coast? Fish caught hundreds of miles away would beg to differ. “Barring another unanticipated release. . . ?” Over the now almost 13 months since the Fukushima crisis began, there have been a series of releases into the air and into the ocean–some planned, some perhaps unanticipated at the time, but overall, the pattern is clear, radioactivity continues to enter the environment at unprecedented levels.

And radioactive contaminants “should be sufficiently dispersed over time, unless they bioaccumulate?” Unless? Bioaccumulation is not some crazy, unobserved hypothesis, it is a documented biological process. Bioaccumulation will happen–it will happen in migratory fish and it will happen as under-policed food and commercial products (not to mention that pesky debris) make their way around the globe.

Maybe that is supposed to be read by inquiring minds as the report’s “please ignore he man behind the curtain” moment–an intellectual out clause disguised as an authoritative analgesic–but there is no escaping the intent. Though filled with caveats and counterfactuals, the report is clearly meant to serve as a sop to those alarmed by the spreading ecological catastrophe posed by the ongoing Fukushima disaster.

The devil is in the details–the dangers are in the data

Beyond the wiggle words, perhaps the most damning indictment of the CRS marine radiation report can be found in the footnotes–or, more pointedly, in the dates of the footnotes. Though this report was released over a year after the Tohoku earthquake and tsunami triggered the Fukushima nightmare, the CRS bases the preponderance of its findings on information generated during the disaster’s first month. In fact, of the document’s 29 footnotes, only a handful date from after May 2011–one of those points to a CNN report (authoritative!), one to a status update on the Fukushima reactor structures, one confirms the value of Japanese seafood imports, three are items tracking the tsunami debris, and one directs readers to a government page on FDA radiation screening, the pertinent part of which was last updated on March 28 of last year.

Most crucially, the parts of the CRS paper that downplay the amounts of radiation measured by domestic US sensors all cite data collected within the first few weeks of the crisis. The point about radioisotopes being “below any level of concern” comes from an EPA news release dated March 22, 2011–eleven days after the earthquake, only six days after the last reported reactor explosion, and well before so many radioactive releases into the air and ocean. It is like taking reports of only minor flooding from two hours after Hurricane Katrina passed over New Orleans, and using them as the standard for levee repair and gulf disaster planning (perhaps not the best example, as many have critiqued levee repairs for their failure to incorporate all the lessons learned from Katrina).

It now being April of 2012, much more information is available, and clearly any report that expects to be called serious should have included at least some of it.

By October of last year, scientists were already doubling their estimates of the radiation pushed into the atmosphere by the Daiichi reactors, and in early November, as reported here, France’s Institute for Radiological Protection and Nuclear Safety issued a report showing the amount of cesium 137 released into the ocean was 30 times greater than what was stated by TEPCO in May. Shockingly, the Congressional Research Service does not reference this report.

Or take the early March 2012 revelation that seaweed samples collected from off the coast of southern California show levels of radioactive iodine 131 500 percent higher than those from anywhere else in the US or Canada. It should be noted that this is the result of airborne fallout–the samples were taken in mid-to-late-March 2011, much too soon for water-borne contamination to have reached that area–and so serves to confirm models that showed a plume of radioactive fallout with the greatest contact in central and southern California. (Again, this specific report was released a month before the CRS report, but the data it uses were collected over a year ago.)

Then there are the food samples taken around Japan over the course of the last year showing freshwater and sea fish–some caught over 200 kilometers from Fukushima–with radiation levels topping 100 becquerels per kilogram (one topping 600 Bq/kg).

And the beat goes on

This information, and much similar to it, was all available before the CRS released its document, but the report also operates in a risibly artificial universe that assumes the situation at Fukushima Daiichi has basically stabilized. As a sampling of pretty much any week’s news will tell you, it has not. Take, for example, this week:

About 12 tons of water contaminated with radioactive strontium are feared to have leaked from the Fukushima No. 1 plant into the Pacific Ocean, Tepco said Thursday.

The leak occurred when a pipe broke off from a joint while the water was being filtered for cesium, Tokyo Electric Power Co. said.

The system doesn’t remove strontium, and most of the water apparently entered the sea via a drainage route, Tepco added.

The water contained 16.7 becquerels of cesium per cu. centimeter and tests are under way to determine how much strontium was in it, Tepco said.

This is the second such leak in less than two weeks, and as Kazuhiko Kudo, a professor of nuclear engineering at Kyushu University who visited Fukushima Daiichi twice last year, noted:

There will be similar leaks until Tepco improves equipment. The site had plastic pipes to transfer radioactive water, which Tepco officials said are durable and for industrial use, but it’s not something normally used at nuclear plants. Tepco must replace it with metal equipment, such as steel.

(The plastic tubes–complete with the vinyl and duct tape patch–can be viewed here.)

And would that the good people at the Congressional Research Service could have waited to read a report that came out the same day as theirs:

Radioactive material from the Fukushima nuclear disaster has been found in tiny sea creatures and ocean water some 186 miles (300 kilometers) off the coast of Japan, revealing the extent of the release and the direction pollutants might take in a future environmental disaster.

In some places, the researchers from Woods Hole Oceanographic Institution (WHOI) discovered cesium radiation hundreds to thousands of times higher than would be expected naturally, with ocean eddies and larger currents both guiding the “radioactive debris” and concentrating it.

Or would that the folks at CRS had looked to their fellow government agencies before they went off half-cocked. (The study above was done by researchers at Woods Hole and written up in the journal of the National Academy of Sciences.) In fact, it appears the CRS could have done that. In its report, CRS mentions that “Experts cite [Fukushima] as the largest recorded release of radiation to the ocean,” and the source for that point is a paper by Ken Buesseler–the same Ken Buesseler that was the oceanographer in charge of the WHOI study. Imagine what could have been if the Congressional Research Service had actually contacted the original researcher.

Can openers all around

Or perhaps it wouldn’t have mattered. For if there is one obvious takeaway from the CRS paper, beyond its limits of scope and authority, that seeks to absolve it of all other oversights–it is its unfailing confidence in government oversight.

Take a gander at the section under the bolded question “Are there implications for US seafood safety?”:

It does not appear that nuclear contamination of seafood will be a food safety problem for consumers in the United States. Among the main reasons are that:

  • damage from the disaster limited seafood production in the affected areas,
  • radioactive material would be diluted before reaching U.S. fishing grounds, and
  • seafood imports from Japan are being examined before entry into the United States.

According to the U.S. Food and Drug Administration (FDA), because of damage from the earthquake and tsunami to infrastructure, few if any food products are being exported from the affected region. For example, according to the National Federation of Fisheries Cooperative Associations, the region’s fishing industry has stopped landing and selling fish. Furthermore, a fishing ban has been enforced within a 2-kilometer radius around the damaged nuclear facility.

So, the Food and Drug Administration is relying on the word of an industry group and a Japanese government-enforced ban that encompasses a two-kilometer radius–what link of that chain is supposed to be reassuring?

Last things first: two kilometers? Well, perhaps the CRS should hire a few proofreaders. A search of the source materials finds that the ban is supposed to be 20-kilometers. Indeed, the Japanese government quarantined the land for a 20-kilometer radius. The US suggested evacuation from a 50-mile (80-kilometer) radius. The CRS’s own report notes contaminated fish were collected 30 kilometers from Fukushima. So why is even 20 kilometers suddenly a radius to brag about?

As for a damaged industry not exporting, numerous reports show the Japanese government stepping in to remedy that “problem.” From domestic PR campaigns encouraging the consumption of foodstuffs from Fukushima prefecture, to the Japanese companies selling food from the region to other countries at deep discounts, to the Japanese government setting up internet clearing houses to help move tainted products, all signs point to a power structure that sees exporting possibly radioactive goods as essential to its survival.

The point on dilution, of course, not only ignores the way many large scale fishing operations work, it ignores airborne contamination and runs counter to the report’s own acknowledgment of bioaccumulation.

But maybe the shakiest assertion of all is that the US Food and Drug Administration will stop all contaminated imports at the water’s edge. While imports hardly represent the total picture when evaluating US seafood safety, taking this for the small slice of the problem it covers, it engenders raised eyebrows.

First there is the oft-referenced point from nuclear engineer Arnie Gundersen, who said last summer that State Department officials told him of a secret agreement between Japan and Secretary Hilary Clinton guaranteeing the continued importation of Japanese food. While independent confirmation of this pact is hard to come by, there is the plain fact that, beyond bans on milk, dairy products, fruits and vegetables from the Fukushima region issued in late March 2011, the US has proffered no other restrictions on Japanese food imports (and those few restrictions for Japanese food were lifted for US military commissaries in September).

And perhaps most damning, there was the statement from an FDA representative last April declaring that North Pacific seafood was so unlikely to be contaminated that “no sampling or monitoring of our fish is necessary.” The FDA said at the time that it would rely on the National Oceanographic and Atmospheric Administration (NOAA) to tell it when they should consider testing seafood, but a NOAA spokesperson said it was the FDA’s call.

Good. Glad that’s been sorted out.

The Congressional Research Service report seems to fall victim to a problem noted often here–they assume a can opener. As per the joke, the writers stipulate a functioning mechanism before explaining their solution. As many nuclear industry-watchers assume a functioning regulatory process (as opposed to a captured Nuclear Regulatory Commission, an industry-friendly Department of Energy, and industry-purchased members of Congress) when speaking of the hypothetical safety of nuclear power, the CRS here assumes an FDA interested first and foremost in protecting the general public, instead of an agency trying to strike some awkward “balance” between health, profit and politics. The can opener story is a joke; the effects of this real-life example are not.

Garbage in, garbage out

The Congressional Research Service, a part of the Library of Congress, is intended to function as the research and analysis wing of the US Congress. It is supposed to be objective, it is supposed to be accurate, and it is supposed to be authoritative. America needs the CRS to be all of those things because the agency’s words are expected to inform federal legislation. When the CRS shirks its responsibility, shapes its words to fit comfortably into the conventional wisdom, or shaves off the sharp corners to curry political favor, the impact is more than academic.

When the CRS limits its scope to avoid inconvenient truths, it bears false witness to the most important events of our time. When the CRS pretends other government agencies are doing their jobs–despite documentable evidence to the contrary–then they are not performing theirs. And when the CRS issues a report that ignores the data and the science so that a few industries might profit, it is America that loses.

The authors of this particular report might not be around when the bulk of the cancers and defects tied to the radiation from Fukushima Daiichi present in the general population, but this paper’s integrity today could influence those numbers tomorrow. Bad, biased, or bowdlerized advice could scuttle meaningful efforts to make consequential policy.

If the policy analysts that sign their names to reports like this don’t want their work used for scrap paper, then maybe they should take a lesson from the Ryou-Un Maru. Going where the winds and currents take you makes you at best a curiosity, and more likely a nuisance–just so much flotsam and jetsam getting in the way of actual business. Works of note come with moral rudders, anchored to best data available; without that, the report might as well just say “good luck.”

The Party Line – July 15, 2011: Japan’s PM Recommends Shift Away from Nuclear Power; US Report Recommends Regulatory Tweaks

While most of creation is still trying to predict if Congress will raise the debt ceiling, and what will happen to the economy if they don’t, I thought I’d spend some quality time with disasters quite present, and in some ways, quite predictable. I am talking about nuclear power in the wake of Japan’s Fukushima disaster.

As I detailed a few weeks back, Germany’s Prime Minister, Angela Merkel, announced a plan to shut down all of her country’s nuclear reactors by 2022. This week, Japanese PM Naoto Kan made similar noises:

We should reduce our dependence in a planned and gradual way, and in the future we should aim to get by with no nuclear energy. When we think of the magnitude of the risks involved with nuclear power, the safety measures we previously conceived are inadequate.

And, also this week, here in the United States, the Nuclear Regulatory Commission released, via its website, an 80-something-page report on the Japanese nuclear disaster [PDF], which included a series of recommendations for improving safety and disaster response at US nuclear power facilities.

Just doesn’t have the same oomph, does it? Kind of missing the gravity or sense of urgency of a head of state declaring an unambiguous move away from nuclear power, no?

Style points aside—I mean, you can hardly expect President Obama to break away from round-the-clock deficit hysteria to address a looming threat that also happens to siphon billions of dollars from federal coffers in the form of subsidies and loan guarantees—the content of the report itself, its findings and recommendations, also leave me feeling a bit underwhelmed.

As noted, the report is long–and it is dense–but as I understand it, the task force recommends that regulators pay more attention to what the report calls “low-likelihood, high-consequence events”. . . you know, like earthquakes and floods that damage nuclear reactors and safety systems.

Hard to argue with that. . . but then the task force also says that the sort of high-consequence disaster that happened in Japan can’t happen in the US—and that is a point that I and many experts and activists would argue against. To put it very briefly, the United States has many reactors past their projected life spans, many similar in design to Fukushima’s, and many built in areas vulnerable to seismic activity, floods and, yes, even tsunamis.

Also recommended, that the government standardize safety regulations and emergency response plans—and make them actual rules as opposed to voluntary industry initiatives (aka “suggestions”)—which is good as far as it goes, but in the wake of a multi-part AP exposé showing how the NRC conspired with the nuclear industry to lower safety standards, I’m thinking that doesn’t go that far.

Perhaps what is most important, however, is what’s missing from the Near-Term Task Force Review. As noted by Physicians for Social Responsibility, the report makes no recommendation for moving spent nuclear fuel from over-packed pools to hardened on-site storage. A striking omission considering that used fuel rods stored in pools inside the Fukushima reactor buildings were and continue to be a serious part of the crisis in Japan.

Also highlighted by PSR, though completely outside the prescribed scope of the investigation, the task force states that there is an “expectation of no significant radiological health effects” from the Fukushima disaster.

No significant radiological health effects. When I first read that, I assumed the NRC review was referring to the United States—an assertion that already strains credulity as far as I’m concerned, but one that can be debated, given the distance and the data (or paucity of data). But, as I read it—uh, re-read it—this “conclusion” is a general one, as in everywhere, as in an expectation of no significant radiological health effects in Japan.

Now, that assertion, without any long-term health screenings or any epidemiological studies, is as worthless as it is irresponsible, but to make such a statement a week after a Japanese report revealed that 45 percent of children in Fukushima Prefecture have thyroids that show evidence of exposure to radiation makes one wonder what the US task force used for data. . . or if they felt the need to use data at all. Also revealed at the end of June, soil samples from the city of Fukushima—an area well outside of the quarantine radius—contained radioactive cesium at levels 1.5 to 4.5 times greater than the legal limit. (Radioactive cesium 137 has a half-life of approximately 30 years and tends to accumulate in plant tissue and fungal spores.)

But wait, there’s more:

Another sample taken from a street ditch — where nuclear fallout often accumulates — registered as much as 931,000 becquerels per sq. meter, surpassing the 555,000 becquerels per sq. meter limit for compulsory resettlement in the 1986 Chernobyl nuclear accident. Samples from the other three locations measured between 326,000 and 384,000 becquerels per sq. meter.

An earlier survey on soil in the city of Fukushima by the science ministry has found 37,000 becquerels of radioactive substances per 1 kg — equivalent to 740,000 becquerels per sq. meter.

That’s Japan. Here in North America, we found out this week that the Environmental Protection Agency was measuring radioactive iodine in rainwater out west at levels 30, 40, and, in one case, 130 times what is considered the safety standard for drinking water. Granted, a drinking water standard is not the same as a rainwater measure (as I understand it, the drinking water standard is based on the chances that consumption of a glass a day for 30 years will result in cancer), but that does not mean that this revelation doesn’t raise many questions.

For instance, what about negative non-cancer health effects? Has rain-borne radiation contaminated reservoirs, wells, or watersheds? What about bioaccumulation, what about the radiation that winds up in and on plants and animals? And what about—and this has been one of my big questions since the early days of this crisis—what about other isotopes, ones with other deleterious health effects, ones with half-lives measured in decades (like Cs-137) as opposed to days (like I-131)? And, of course, since it has been determined that there is no such thing as a “safe” level of radiation exposure, no matter the source, shouldn’t the government do a better job of informing the public of any significant increases?

To that last point, the report on radioactive rainwater, which is from Heart of America Northwest, also revealed that, in many cases, there was a lag time of a week between the radiation readings and the posting of the information on the EPA’s RadNet website. So, even for those that could parse the data on the less-than-lay-friendly site, the news was nowhere close to real-time, and so nowhere close to immediate enough for individuals trying to assess risk and adjust behavior accordingly.

The same report notes that though the EPA says it stepped up rainwater sampling following the start of the nuclear disaster in Japan, several sites (Portland, OR, for example) do not show additional sample dates beyond the standard once per month. That leads one to assume that the EPA was less diligent than they claimed, but could it also be that the EPA collected samples but chose not to post the data? (That’s an honest question—I don’t know if the latter is possible, but it did occur to me.)

By the way, that increase in sampling—it ended on May 3. . . because, of course, the Fukushima crisis is over. . . .

But, of course, the crisis is not over. Beyond the melted cores in several Fukushima reactors—where Japanese response teams are still trying to understand the shape and temperature of fuel and the integrity of the containment vessels—there are the pools of spent fuel rods, still very radioactive, still sitting in reactor buildings without roofs (which were destroyed by hydrogen explosions in the days after the earthquake and tsunami). Those pools are still sending an unknown amount of radiation into the atmosphere, and those pools will remain exposed for months to come (the first attempt to cover one of the reactor buildings is expected in late September).

So, that’s a lot to digest—for me, yes, and maybe for you, too—but at least I am trying to take it all in. Did the NRC task force take in any of this before they issued their report? Did they digest it? Yes or no, I find their assertion of no significant radiological health effects hard to swallow.

The differences in the levels of response—Germany announcing a plan to end its use of nuclear power, and Japan’s PM stating that his country should do the same, versus the United States quietly releasing a wonky report with a set of recommendations for a sustained nuclear future—tells me that the US government will not learn the lessons of the Fukushima disaster, and I find that hard to stomach.

(A version of this post also appears at Firedoglake.)