The Brief Wondrous Life (and Long Dangerous Half-Life) of Strontium-90

Tooth to Science button2At roughly 5:30 in the morning on July 16, 1945, an implosion-design plutonium device, codenamed “the gadget,” exploded over the Jornada del Muerto desert in south-central New Mexico with a force equivalent to about 20,000 tons of TNT. It was the world’s first test of an atomic bomb, and as witnesses at base camp some ten miles away would soon relay to US President Harry Truman, the results were “satisfactory” and exceeded expectations. Within weeks, the United States would use a uranium bomb of a different design on the Japanese city of Hiroshima, and three days after that, a plutonium device similar to the gadget was dropped on Nagasaki, about 200 miles to the southwest.

Though Hiroshima and Nagasaki are the only instances where atomic weapons were used against a wartime enemy, between 1945 and 1963, the world experienced hundreds upon hundreds of nuclear weapons tests, the great majority of which were above ground or in the sea–in other words, in the atmosphere. The US tested atom and hydrogen bombs in Nevada, at the Nevada Test Site, and in the Pacific Ocean, on and around the Marshall Islands, in an area known as the Pacific Proving Grounds. After the Soviet Union developed its own atomic weapon in 1949, it carried out hundreds of similar explosions, primarily in Kazakhstan, and the UK performed more than 20 of its own atmospheric nuclear tests, mostly in Australia and the South Pacific, between 1952 and 1958.

Though military authorities and officials with the US Atomic Energy Commission initially downplayed the dispersal and dangers of fallout from these atmospheric tests, by the early 1950s, scientists in nuclear and non-nuclear countries alike began to raise concerns. Fallout from atmospheric tests was not contained simply to the blast radius or a region near the explosion, instead the products of fission and un-fissioned nuclear residue were essentially vaporized by the heat and carried up into the stratosphere, sweeping across the globe, and eventually returning to earth in precipitation. A host of radioactive isotopes contaminated land and surface water, entering the food chain through farms and dairies.

The tale of the teeth

In order to demonstrate that fallout was widespread and had worked its way into the population, a group of researchers, headed by Dr. Barry Commoner and Drs. Louise and Eric Reiss, founded the Baby Tooth Survey under the auspices of Washington University (where Commoner then taught) and the St. Louis Citizens’ Committee for Nuclear Information. The tooth survey sought to track strontium-90 (Sr-90), a radioactive isotope of the alkaline earth metal strontium, which occurs as a result–and only as a result–of nuclear fission. Sr-90 is structurally similar to calcium, and so, once in the body, works its way into bones and teeth.

While harvesting human bones was impractical, researchers realized that baby teeth should be readily available. Most strontium in baby teeth would transfer from mother to fetus during pregnancy, and so birth records would provide accurate data about where and when those teeth were formed. The tooth survey collected baby teeth, initially from the St. Louis area, eventually from around the globe, and analyzed them for strontium.

By the early ’60s, the program had collected well over a quarter-million teeth, and ultimately found that children in St. Louis in 1963 had 50 times more Sr-90 in them than children born in 1950. Armed with preliminary results from this survey and a petition signed by thousands of scientists worldwide, Dr. Commoner successfully lobbied President John F. Kennedy to negotiate and sign the Partial Test Ban Treaty, halting atmospheric nuclear tests by the US, UK and USSR. By the end of the decade, strontium-90 levels in newly collected baby teeth were substantially lower than the ’63 samples.

The initial survey, which ended in 1970, continues to have relevance today. Some 85,000 teeth not used in the original project were turned over to researchers at the Radiation and Public Health Project (RPHP) in 2001. The RPHP study, released in 2010, found that donors from the Baby Tooth Survey who had died of cancer before age 50 averaged over twice the Sr-90 in their samples compared with those who had lived past their 50th birthday.

But the perils of strontium-90–or, indeed, a host of radioactive isotopes that are strontium’s travel companions–did not cease with the ban on atmospheric nuclear tests. Many of the hazards of fallout could also be associated with the radiological pollution that is part-and-parcel of nuclear power generation. The controlled fission in a nuclear reactor produces all of the elements created in the uncontrolled fission of a nuclear explosion. This point was brought home by the RPHP work, when it found strontium-90 was 30- to 50-percent higher in baby teeth collected from children born in “nuclear counties,” (PDF) the roughly 40 percent of US counties situated within 100 miles of a nuclear power plant or weapons lab.

Similar baby teeth research has been conducted over the last 30 years in Denmark, Japan and Germany, with measurably similar results. While Sr-90 levels continued to decrease in babies born through the mid 1970s, as the use of nuclear power starts to spread worldwide, that trend flattens. Of particular note, a study conducted by the German section of the International Physicians for the Prevention of Nuclear War (winner of the 1985 Nobel Peace Prize) found ten-times more strontium-90 in the teeth of children born after the 1986 Chernobyl nuclear disaster when compared with samples from 1983.

While radioactive strontium itself can be linked to several diseases, including leukemia and bone cancers, Sr-90, as mentioned above, is but one of the most measurable of many dangerous isotopes released into the environment by the normal, everyday operation of nuclear reactors, even without the catastrophic discharges that come with accidents and meltdowns. Tritium, along with radioactive variants of iodine, cesium and xenon (to name just a few) can often be detected in elevated levels in areas around nuclear facilities.

Epidemiological studies have shown higher risks of breast and prostate cancers for those living in US nuclear counties. But while the Environmental Protection Agency collects sporadic data on the presence of radioactive isotopes such as Sr-90, the exact locations of the sampling sites are not part of the data made available to the general public. Further, while “unusual” venting of radioactive vapor or the dumping of contaminated water from a nuclear plant has to be reported to the Nuclear Regulatory Commission (and even then, it is the event that is reported, not the exact composition of the discharge), the radio-isotopes that are introduced into the environment by the typical operation of a reactor meet with far less scrutiny. In the absence of better EPA data and more stringent NRC oversight, studies like the Baby Tooth Survey and its contemporary brethren are central to the public understanding of the dangers posed by the nuclear power industry.

June and Sr-90: busting out all over

As if to underscore the point, strontium-90 served as the marker for troubling developments on both sides of the Pacific just this June.

In Japan, TEPCO–still the official operator of Fukushima Daiichi–revealed it had found Sr-90 in groundwater surrounding the crippled nuclear plant at “very high” levels. Between December 2012 and May 2013, levels of strontium-90 increased over 100-fold, to 1,000 becquerels per liter–33 times the Japanese limit for the radioactive isotope.

The samples were taken less than 100 feet from the coast. From that point, reports say, the water usually flows out to the Pacific Ocean.

Beyond the concerns raised by the affects of the strontium-90 (and the dangerously high amounts of tritium detected along with it) when the radioactive contamination enters the food chain, the rising levels of Sr-90 likely indicate other serious problems at Fukushima. Most obviously, there is now little doubt that TEPCO has failed to contain contaminated water leaking from the damaged reactor buildings–contrary to the narrative preferred by company officials.

But skyrocketing levels of strontium-90 could also suggest that the isotope is still being produced–that nuclear fission is still occurring in one or more of the damaged reactor cores. Or even, perhaps, outside the reactors, as the corium (the term for the molten, lava-like nuclear fuel after a meltdown) in as many as three units is believed to have melted through the steel reactor containment and possibly eroded the concrete floor, as well.

An ocean away, in Washington state, radiological waste, some of which dates back to the manufacture of those first atom bombs, sits in aging storage tanks at the Hanford Nuclear Reservation–and some of those tanks are leaking.

In truth, tanks at Hanford, considered by many the United States’ most contaminated nuclear site, have been leaking for some time. But the high-level radioactive waste in some of the old, single-wall tanks had been transferred to newer, double-walled storage, which was supposed to provide better containment. On June 20, however, the US Department of Energy reported that workers at Hanford detected radioactive contamination–specifically Sr-90–outside one of the double-walled tanks, possibly suggesting a breach. The predominant radionuclides in the 850,000-gallon tank are reported to be strontium-90 and cesium-137.

The tank, along with hundreds of others, sits about five miles from the Columbia River, water source for much of the region. Once contamination leaks from the tanks, it mixes with ground water, and, in time, should make its way to the river. “I view this as a crisis,” said Tom Carpenter, executive director of the watchdog group Hanford Challenge, “These tanks are not supposed to fail for 50 years.”

Destroyer of worlds

In a 1965 interview, J. Robert Oppenheimer, the Manhattan Project’s science director who was in charge of the Los Alamos facility that developed the first atomic bombs, looked back twenty years to that July New Mexico morning:

We knew the world would not be the same. A few people laughed, a few people cried. Most people were silent. I remembered the line from the Hindu scripture, the Bhagavad-Gita; Vishnu is trying to persuade the Prince that he should do his duty and, to impress him, takes on his multi-armed form and says, “Now I am become Death, the destroyer of worlds.” I suppose we all thought that, one way or another.

“We knew the world would not be the same.” Oppenheimer was most likely speaking figuratively, but, as it turns out, he also reported a literal truth. Before July 16, 1945, there was no strontium-90 or cesium-137 in the atmosphere–it simply did not exist in nature. But ever since that first atomic explosion, these anthropogenic radioactive isotopes have been part of earth’s every turn.

Strontium-90–like cesium-137 and a catalog of other hazardous byproducts of nuclear fission–takes a long time to decay. The detritus of past detonations and other nuclear disasters will be quite literally with us–in our water and soil, in our tissue and bone–for generations. These radioactive isotopes have already been linked to significant suffering, disease and death. Their danger was acknowledged by the United States when JFK signed the 1963 Test Ban Treaty. Now would be a good time to acknowledge the perspicacity of that president, phase out today’s largest contributors of atmospheric Sr-90, nuclear reactors, and let the sun set on this toxic metal’s life.

 

A version of this story previously appeared on Truthout; no version may be reprinted without permission.

Two Years On, Fukushima Raises Many Questions, Provides One Clear Answer

Fukushima's threats to health and the environment continue. (graphic: Surian Soosay via flickr)

Fukushima’s threats to health and the environment continue. (graphic: Surian Soosay via flickr)

You can’t say you have all the answers if you haven’t asked all the questions. So, at a conference on the medical and ecological consequences of the Fukushima nuclear disaster, held to commemorate the second anniversary of the earthquake and tsunami that struck northern Japan, there were lots of questions. Questions about what actually happened at Fukushima Daiichi in the first days after the quake, and how that differed from the official report; questions about what radionuclides were in the fallout and runoff, at what concentrations, and how far they have spread; and questions about what near- and long-term effects this disaster will have on people and the planet, and how we will measure and recognize those effects.

A distinguished list of epidemiologists, oncologists, nuclear engineers, former government officials, Fukushima survivors, anti-nuclear activists and public health advocates gathered at the invitation of The Helen Caldicott Foundation and Physicians for Social Responsibility to, if not answer all these question, at least make sure they got asked. Over two long days, it was clear there is much still to be learned, but it was equally clear that we already know that the downsides of nuclear power are real, and what’s more, the risks are unnecessary. Relying on this dirty, dangerous and expensive technology is not mandatory–it’s a choice. And when cleaner, safer, and more affordable options are available, the one answer we already have is that nuclear is a choice we should stop making and a risk we should stop taking.

“No one died from the accident at Fukushima.” This refrain, as familiar as multiplication tables and sounding about as rote when recited by acolytes of atomic power, is a close mirror to versions used to downplay earlier nuclear disasters, like Chernobyl and Three Mile Island (as well as many less infamous events), and is somehow meant to be the discussion-ender, the very bottom-line of the bottom-line analysis that is used to grade global energy options. “No one died” equals “safe” or, at least, “safer.” Q.E.D.

But beyond the intentional blurring of the differences between an “accident” and the probable results of technical constraints and willful negligence, the argument (if this saw can be called such) cynically exploits the space between solid science and the simple sound bite.

“Do not confuse narrowly constructed research hypotheses with discussions of policy,” warned Steve Wing, Associate Professor of Epidemiology at the University of North Carolina’s Gillings School of Public Health. Good research is an exploration of good data, but, Wing contrasted, “Energy generation is a public decision made by politicians.”

Surprisingly unsurprising

A public decision, but not necessarily one made in the public interest. Energy policy could be informed by health and environmental studies, such as the ones discussed at the Fukushima symposium, but it is more likely the research is spun or ignored once policy is actually drafted by the politicians who, as Wing noted, often sport ties to the nuclear industry.

The link between politicians and the nuclear industry they are supposed to regulate came into clear focus in the wake of the March 11, 2011 Tohoku earthquake and tsunami–in Japan and the United States.

The boiling water reactors (BWRs) that failed so catastrophically at Fukushima Daiichi were designed and sold by General Electric in the 1960s; the general contractor on the project was Ebasco, a US engineering company that, back then, was still tied to GE. General Electric had bet heavily on nuclear and worked hand-in-hand with the US Atomic Energy Commission (AEC–the precursor to the NRC, the Nuclear Regulatory Commission) to promote civilian nuclear plants at home and abroad. According to nuclear engineer Arnie Gundersen, GE told US regulators in 1965 that without quick approval of multiple BWR projects, the giant energy conglomerate would go out of business.

It was under the guidance of GE and Ebasco that the rocky bluffs where Daiichi would be built were actually trimmed by 10 meters to bring the power plant closer to the sea, the water source for the reactors’ cooling systems–but it was under Japanese government supervision that serious and repeated warnings about the environmental and technological threats to Fukushima were ignored for another generation.

Failures at Daiichi were completely predictable, observed David Lochbaum, the director of the Nuclear Safety Project at the Union of Concerned Scientists, and numerous upgrades were recommended over the years by scientists and engineers. “The only surprising thing about Fukushima,” said Lochbaum, “is that no steps were taken.”

The surprise, it seems, should cross the Pacific. Twenty-two US plants mirror the design of Fukushima Daiichi, and many stand where they could be subject to earthquakes or tsunamis. Even without those seismic events, some US plants are still at risk of Fukushima-like catastrophic flooding. Prior to the start of the current Japanese crisis, the Nuclear Regulatory Commission learned that the Oconee Nuclear Plant in Seneca, South Carolina, was at risk of a major flood from a dam failure upstream. In the event of a dam breach–an event the NRC deems more likely than the odds that were given for the 2011 tsunami–the flood at Oconee would trigger failures at all four reactors. Beyond hiding its own report, the NRC has taken no action–not before Fukushima, not since.

The missing link

But it was the health consequences of nuclear power–both from high-profile disasters, as well as what is considered normal operation–that dominated the two days of presentations at the New York Academy of Medicine. Here, too, researchers and scientists attempted to pose questions that governments, the nuclear industry and its captured regulators prefer to ignore, or, perhaps more to the point, omit.

Dr. Hisako Sakiyama, a member of the Fukushima Nuclear Accident Independent Investigation Commission, has been studying the effects of low-dose radiation. Like others at the symposium, Dr. Sakiyama documented the linear, no-threshold risk model drawn from data across many nuclear incidents. In essence, there is no point at which it can be said, “Below this amount of radiation exposure, there is no risk.” And the greater the exposure, the greater the risk of health problems, be they cancers or non-cancer diseases.

Dr. Sakiyama contrasted this with the radiation exposure limits set by governments. Japan famously increased what it called acceptable exposure quite soon after the start of the Fukushima crisis, and, as global background radiation levels increase as a result of the disaster, it is feared this will ratchet up what is considered “safe” in the United States, as the US tends to discuss limits in terms of exposure beyond annual average background radiation. Both approaches lack credibility and expose an ugly truth. “Debate on low-dose radiation risk is not scientific,” explained Sakiyama, “but political.”

And the politics are posing health and security risks in Japan and the US.

Akio Matsumura, who spoke at the Fukushima conference in his role as founder of the Global Forum of Spiritual and Parliamentary Leaders for Human Survival, described a situation at the crippled Japanese nuclear plant that is much more perilous, even today, than leaders are willing to acknowledge. Beyond the precarious state of the spent fuel pool above reactor four, Matsumura also cited the continued melt-throughs of reactor cores (which could lead to a steam explosion), the high levels of radiation at reactors one and three (making any repairs impossible), and the unprotected pipes retrofitted to help cool reactors and spent fuel. “Probability of another disaster,” Matsumura warned, “is higher than you think.”

Matsumura lamented that investigations of both the technical failures and the health effects of the disaster are not well organized. “There is no longer a link between scientists and politicians,” said Matsumura, adding, “This link is essential.”

The Union of Concerned Scientists’ Lochbaum took it further. “We are losing the no-brainers with the NRC,” he said, implying that what should be accepted as basic regulatory responsibility is now subject to political debate. With government agencies staffed by industry insiders, “the deck is stacked against citizens.”

Both Lochbaum and Arnie Gundersen criticized the nuclear industry’s lack of compliance, even with pre-Fukushima safety requirements. And the industry’s resistance undermines nuclear’s claims of being competitive on price. “If you made nuclear power plants meet existing law,” said Gundersen, “they would have to shut because of cost.”

But without stronger safety rules and stricter enforcement, the cost is borne by people instead.

Determinate data, indeterminate risk

While the two-day symposium was filled with detailed discussions of chemical and epidemiologic data collected throughout the nuclear age–from Hiroshima through Fukushima–a cry for more and better information was a recurring theme. In a sort of wily corollary to “garbage in, garbage out,” experts bemoaned what seem like deliberate holes in the research.

Even the long-term tracking study of those exposed to the radiation and fallout in Japan after the atomic blasts at Hiroshima and Nagasaki–considered by many the gold-standard in radiation exposure research because of the large sample size and the long period of time over which data was collected–raises as many questions as it answers.

The Hiroshima-Nagasaki data was referenced heavily by Dr. David Brenner of the Center for Radiological Research, Columbia University College of Physicians and Surgeons. Dr. Brenner praised the study while using it to buttress his opinion that, while harm from any nuclear event is unfortunate, the Fukushima crisis will result in relatively few excess cancer deaths–something like 500 in Japan, and an extra 2,000 worldwide.

“There is an imbalance of individual risk versus overall anxiety,” said Brenner.

But Dr. Wing, the epidemiologist from the UNC School of Public Health, questioned the reliance on the atom bomb research, and the relatively rosy conclusions those like Dr. Brenner draw from it.

“The Hiroshima and Nagasaki study didn’t begin till five years after the bombs were dropped,” cautioned Wing. “Many people died before research even started.” The examination of cancer incidence in the survey, Wing continued, didn’t begin until 1958–it misses the first 13 years of data. Research on “Black Rain” survivors (those who lived through the heavy fallout after the Hiroshima and Nagasaki bombings) excludes important populations from the exposed group, despite those populations’ high excess mortality, thus driving down reported cancer rates for those counted.

The paucity of data is even more striking in the aftermath of the Three Mile Island accident, and examinations of populations around American nuclear power plants that haven’t experienced high-profile emergencies are even scarcer. “Studies like those done in Europe have never been done in the US,” said Wing with noticeable regret. Wing observed that a German study has shown increased incidences of childhood leukemia near operating nuclear plants.

There is relatively more data on populations exposed to radioactive contamination in the wake of the Chernobyl nuclear accident. Yet, even in this catastrophic case, the fact that the data has been collected and studied owes much to the persistence of Alexey Yablokov of the Russian Academy of Sciences. Yablokov has been examining Chernobyl outcomes since the early days of the crisis. His landmark collection of medical records and the scientific literature, Chernobyl: Consequences of the Catastrophe for People and the Environment, has its critics, who fault its strong warnings about the long-term dangers of radiation exposure, but it is that strident tone that Yablokov himself said was crucial to the evolution of global thinking about nuclear accidents.

Because of pressure from the scientific community and, as Yablokov stressed at the New York conference, pressure from the general public, as well, reaction to accidents since Chernobyl has evolved from “no immediate risk,” to small numbers who are endangered, to what is now called “indeterminate risk.”

Calling risk “indeterminate,” believe it or not, actually represents a victory for science, because it means more questions are asked–and asking more questions can lead to more and better answers.

Yablokov made it clear that it is difficult to estimate the real individual radiation dose–too much data is not collected early in a disaster, fallout patterns are patchy and different groups are exposed to different combinations of particles–but he drew strength from the volumes and variety of data he’s examined.

Indeed, as fellow conference participant, radiation biologist Ian Fairlie, observed, people can criticize Yablokov’s advocacy, but the data is the data, and in the Chernobyl book, there is lots of data.

Complex and consequential

Data presented at the Fukushima symposium also included much on what might have been–and continues to be–released by the failing nuclear plant in Japan, and how that contamination is already affecting populations on both sides of the Pacific.

Several of those present emphasized the need to better track releases of noble gasses, such as xenon-133, from the earliest days of a nuclear accident–both because of the dangers these elements pose to the public and because gas releases can provide clues to what is unfolding inside a damaged reactor. But more is known about the high levels of radioactive iodine and cesium contamination that have resulted from the Fukushima crisis.

In the US, since the beginning of the disaster, five west coast states have measured elevated levels of iodine-131 in air, water and kelp samples, with the highest airborne concentrations detected from mid-March through the end of April 2011. Iodine concentrates in the thyroid, and, as noted by Joseph Mangano, director of the Radiation and Public Health Project, fetal thyroids are especially sensitive. In the 15 weeks after fallout from Fukushima crossed the Pacific, the western states reported a 28-percent increase in newborn (congenital) hypothyroidism (underactive thyroid), according to the Open Journal of Pediatrics. Mangano contrasted this with a three-percent drop in the rest of the country during the same period.

The most recent data from Fukushima prefecture shows over 44 percent of children examined there have thyroid abnormalities.

Of course, I-131 has a relatively short half-life; radioactive isotopes of cesium will have to be tracked much longer.

With four reactors and densely packed spent fuel pools involved, Fukushima Daiichi’s “inventory” (as it is called) of cesium-137 dwarfed Chernobyl’s at the time of its catastrophe. Consequently, and contrary to some of the spin out there, the Cs-137 emanating from the Fukushima plant is also out-pacing what happened in Ukraine.

Estimates put the release of Cs-137 in the first months of the Fukushima crisis at between 64 and 114 petabecquerels (this number includes the first week of aerosol release and the first four months of ocean contamination). And the damaged Daiichi reactors continue to add an additional 240 million becquerels of radioactive cesium to the environment every single day. Chernobyl’s cesium-137 release is pegged at about 84 petabecquerels. (One petabecquerel equals 1,000,000,000,000,000 becquerels.) By way of comparison, the nuclear “device” dropped on Hiroshima released 89 terabecquerels (1,000 terabecquerels equal one petabecquerel) of Cs-137, or, to put it another way, Fukushima has already released more than 6,400 times as much radioactive cesium as the Hiroshima bomb.

The effects of elevated levels of radioactive cesium are documented in several studies across post-Chernobyl Europe, but while the implications for public health are significant, they are also hard to contain in a sound bite. As medical genetics expert Wladimir Wertelecki explained during the conference, a number of cancers and other serious diseases emerged over the first decade after Chernobyl, but the cycles of farming, consuming, burning and then fertilizing with contaminated organic matter will produce illness and genetic abnormalities for many decades to come. Epidemiological studies are only descriptive, Wertelecki noted, but they can serve as a “foundation for cause and effect.” The issues ahead for all of those hoping to understand the Fukushima disaster and the repercussions of the continued use of nuclear power are, as Wertelecki pointed out, “Where you study and what you ask.”

One of the places that will need some of the most intensive study is the Pacific Ocean. Because Japan is an island, most of Fukushima’s fallout plume drifted out to sea. Perhaps more critically, millions of gallons of water have been pumped into and over the damaged reactors and spent fuel pools at Daiichi, and because of still-unplugged leaks, some of that water flows into the ocean every day. (And even if those leaks are plugged and the nuclear fuel is stabilized someday, mountain runoff from the area will continue to discharge radionuclides into the water.) Fukushima’s fisheries are closed and will remain so as far into the future as anyone can anticipate. Bottom feeders and freshwater fish exhibit the worst levels of cesium, but they are only part of the picture. Ken Beusseler, a marine scientist at Woods Hole Oceanographic Institute, described a complex ecosystem of ocean currents, food chains and migratory fish, some of which carry contamination with them, some of which actually work cesium out of their flesh over time. The seabed and some beaches will see increases in radio-contamination. “You can’t keep just measuring fish,” warned Beusseler, implying that the entire Pacific Rim has involuntarily joined a multidimensional long-term radiation study.

For what it’s worth

Did anyone die as a result of the nuclear disaster that started at Fukushima Daiichi two years ago? Dr. Sakiyama, the Japanese investigator, told those assembled at the New York symposium that 60 patients died while being moved from hospitals inside the radiation evacuation zone–does that count? Joseph Mangano has reported on increases in infant deaths in the US following the arrival of Fukushima fallout–does that count? Will cancer deaths or future genetic abnormalities, be they at the low or high end of the estimates, count against this crisis?

It is hard to judge these answers when the question is so very flawed.

As discussed by many of the participants throughout the Fukushima conference, a country’s energy decisions are rooted in politics. Nuclear advocates would have you believe that their favorite fuel should be evaluated inside an extremely limited universe, that there is some level of nuclear-influenced harm that can be deemed “acceptable,” that questions stem from the necessity of atomic energy instead of from whether civilian nuclear power is necessary at all.

The nuclear industry would have you do a cost-benefit analysis, but they’d get to choose which costs and benefits you analyze.

While all this time has been and will continue to be spent on tracking the health and environmental effects of nuclear power, it isn’t a fraction of a fraction of the time that the world will be saddled with fission’s dangerous high-level radioactive trash (a problem without a real temporary storage program, forget a permanent disposal solution). And for all the money that has been and will continue to be spent compiling the health and environmental data, it is a mere pittance when compared with the government subsidies, liability waivers and loan guarantees lavished upon the owners and operators of nuclear plants.

Many individual details will continue to emerge, but a basic fact is already clear: nuclear power is not the world’s only energy option. Nor are the choices limited to just fossil and fissile fuels. Nuclear lobbyists would love to frame the debate–as would advocates for natural gas, oil or coal–as cold calculations made with old math. But that is not where the debate really resides.

If nuclear reactors were the only way to generate electricity, would 500 excess cancer deaths be acceptable? How about 5,000? How about 50,000? If nuclear’s projected mortality rate comes in under coal’s, does that make the deaths–or the high energy bills, for that matter–more palatable?

As the onetime head of the Tennessee Valley Authority, David Freeman, pointed out toward the end of the symposium, every investment in a new nuclear, gas or coal plant is a fresh 40-, 50-, or 60-year commitment to a dirty, dangerous and outdated technology. Every favor the government grants to nuclear power triggers an intense lobbying effort on behalf of coal or gas, asking for equal treatment. Money spent bailing out the past could be spent building a safer and more sustainable future.

Nuclear does not exist in a vacuum; so neither do its effects. There is much more to be learned about the medical and ecological consequences of the Fukushima nuclear disaster–but that knowledge should be used to minimize and mitigate the harm. These studies do not ask and are not meant to answer, “Is nuclear worth it?” When the world already has multiple alternatives–not just in renewable technologies, but also in conservation strategies and improvements in energy efficiency–the answer is already “No.”

A version of this story previously appeared on Truthout; no version may be reprinted without permission.

Fukushima Plus Two: Still the Beginning?

An IAEA inspector examines the remains of reactor 3 at Fukushima Daiichi (5/27/11) (photo: Greg Webb/IAEA imagebank)

An IAEA inspector examines the remains of reactor 3 at Fukushima Daiichi (5/27/11) (photo: Greg Webb/IAEA imagebank)

I was up working in what were in my part of the world the early morning hours of March 11, 2011, when I heard over the radio that a massive earthquake had struck northeastern Japan. I turned on the TV just in time to see the earliest pictures of the tsunami that followed what became known as the Tohoku quake. The devastation was instantly apparent, and reports of high numbers of casualties seemed inevitable, but it wasn’t until a few hours later, when news of the destruction and loss of power at the Fukushima Daiichi nuclear plant hit the English-language airwaves, that I was gripped by a real sense of despair.

I was far from a nuclear expert at the time, but I knew enough to know that without intact cooling systems, or the power to keep them running, and with the added threat of a containment breach, some amount of environmental contamination was certain, and the potential for something truly terrifying was high.

What started as a weekend of watching newswires and live streams, virtually around the clock, and posting basic tech and health questions on email lists, expanded as the Fukushima crisis itself grew. Two years later, I have written tens of thousands of words, and read hundreds of thousands more. I have learned much, but I think I have only scratched the surface.

We all might be a little closer to understanding what happened in those first days and weeks after the earthquake, but what has happened since is still, sadly, a story where much must be written. What the Daiichi plant workers really went through in those early days is just now coming to light, and the tales of intrigue and cover-up, of corruption and captured government, grow more complex and more sinister with each revelation. But what has happened to the environment, not just in the government-cordoned evacuation zone, but also throughout Japan, across the Pacific, and around the world, will likely prove the most chilling narrative.

Radiation levels in the quarantined parts of Japan are still far too high to permit any kind of human re-habitation, but exposure rates in areas far outside that radius are also well above what would have been considered acceptable before this disaster. And water, used to cool the molten cores and damaged spent fuel pools at Fukushima Daiichi, now dangerously radioactive itself, continues to leak into the ground and into the ocean at unprecedented rates.

Alas, the efforts of the Japanese government seem more focused on limiting the information, quieting dissent, and sharing the pain (by shipping radioactive detritus across the country for disposal and incineration), than it is on stopping the leaks, cleaning up the contamination, and eliminating future risks. Though originally pledged to quickly turn away from all nuclear power, a change of government in Japan has revived the incestuous relationship between the nuclear industry and the bureaucrats and politicians who are supposed to police it.

Across the Pacific, the United States has not exactly bathed itself in glory, either. Within days of the news of the explosions at Fukushima, President Barack Obama was the rare world leader that made a point of publicly assuring the nuclear industry that America’s commitment to this dangerous energy source was still strong. Just months after the start of the crisis, information on airborne radiation samples from across the country became less accessible to the public. And while industrialized countries like Germany work to phase out their nuclear plants, the US Nuclear Regulatory Commission actually approved construction of new reactors, and the federal government is poised to backstop the baldly risky investment to the tune of $8.3 billon.

But most disturbing of all, of course, will be the stories of the people. First, the stories we will hear from the families in Japan exposed to the toxic fallout in the immediate aftermath of the initial containment breaches and explosions–stories we are already hearing of children with severe thyroid abnormalities. But soon, and likely for decades to come, the stories of cancers and immune disorders, of birth defects and health challenges, elevated not only in northern Japan, but perhaps across the northern hemisphere.

Two years after the earthquake and tsunami, it is not the beginning of the end of this disaster, and, with apologies to Winston Churchill, it may not even be the end of the beginning. The spent fuel pool at Daiichi reactor 4 remains in precarious shape, and the state of the three molten cores is still shrouded in mystery. Radioactive dust and grime blanket large parts of Japan with no serious plan to remove it, and the waters off the northeast coast continue to absorb irradiated runoff, putting an entire aquatic food chain in peril.

On this second anniversary of the start of the Fukushima crisis, let us honor those who have suffered so far, review what we have learned to date, and endeavor to understand what is likely to come. But, most of all, let us renew our commitment to breaking with this dirty, dangerous and expensive technology.

* * *

To this end, on March 11 and 12, I will be attending a symposium at the New York Academy of Medicine, “The Medical and Ecological Consequences of the Fukushima Nuclear Accident,” sponsored by the Helen Caldicott Foundation and Physicians for Social Responsibility. If you are in the New York area, there is still space available; if you want to watch online, the organizers have promised a live stream. More information can be found on the Caldicott Foundation website.

Imagine a Nuclear-Free California (You Don’t Have To, It’s Already Here)

We welcome our salp overlords. (A chain of salp in the Red Sea; photo: Lars Plougman via Wikipedia)

California has two nuclear power plants. San Onofre, between Los Angeles and San Diego, has been offline for months as everyone tries to find an excuse for the alarmingly rapid wear on new reactor tubing. (Being shut down, however, did not prevent a fire from breaking out this week when a pipe ruptured and released radioactive steam.)

But as of Thursday, Diablo Canyon, the nuclear plant to the north, is also offline–thanks to. . . uh, salp?

Yes, salp–those loveable, gelatinous, jellyfish-like, plankton-eating sea creatures that multiply like, well, salp–have swarmed Diablo Canyon’s water intake system. D-Can draws in tens of thousands of gallons of seawater every day to cool its reactors, and with all that salp clogging the intake pipes, the plant could no longer operate safely.

That may sound like a freak event, but it isn’t. San Onofre had to shut down in 2005 to clear out 11,000 pounds of anchovies that had the bad luck of swimming too close to that plant’s intake filters. . . and in 2004, it shut down, too, but that time it was due to 14,000 pounds of sardines.

And just last year, actual jellyfish (sorry, salps) brought down Florida Power & Light’s St. Lucie nuclear power station. Jellyfish have also previously crippled nuclear facilities in the UK, Israel and Japan.

But back to California, where without nuclear power, the state is heading for a disaster of biblical proportions–we’re talking human sacrifice, dogs and cats living together, mass hysteria!

Actually, no. What will happen is that Pacific Gas & Electric, the owner of Diablo Canyon, and Southern California Edison, San Onofre’s operator, will have to buy electricity (or continue to buy electricity) in order to deliver what they are obligated to deliver. That’s no fun for the big utilities, and maybe it looks biblical to the bean counters, but it is not an energy apocalypse.

Of course, instead of throwing millions after billions to buy surplus electricity elsewhere while also paying to staff, examine and repair its dormant, ancient nuclear facilities, power companies could try to invest more in 21st Century renewable alternatives.

And maybe that would happen if the market were actually, you know, a market. But with tax breaks, loan guarantees, and liability caps, the industry has little motivation to make sound financial or environmental decisions.

But there’s no time like the present to start. And right now, in California, that present is nuclear-free.

A little bit pregnant?

On Thursday, NPR’s Richard Harris delivered a report that regurgitated the nuclear industry’s latest message morph–once “clean, safe, and too cheap to meter,” the 21st Century PR spin has nuclear as the climate-friendly energy option.

The radio piece is ostensibly about how the world’s industrialized nations are failing to meet their climate goals–and this is true (and this is a problem). But Harris does the world and the climate cause no favors when he lazily posits: “Nuclear power produces very little carbon dioxide. . . .”

What does Harris mean by “nuclear power produces very little carbon dioxide?” Is that supposed to be a hedge? If you are isolating the atomic pile generating heat to boil water inside a closed system, then you might as well say “no CO2,” but if you are honest and take into account the whole lifecycle of nuclear fuel–from mining and refining through transportation and storage–then nuclear power produces a prodigious amount of greenhouse gases. Which is it Richard?

Probably just an oversight

The Washington Post published self-serving letter to the editor supporting a recent pro-nuclear editorial, but neglected to include that the letter was written by the current vice president and president elect and sitting member of the board of directors of the unabashedly pro-nuclear American Nuclear Society.

If only Nixon had apologized!

Fukushima Governor Yuhei Sato apologized Wednesday for prefectural officials who deleted records on the spread of radioactive fallout immediately following the start of the Daiichi nuclear crisis in March of 2011. The data from the country’s System for Prediction of Environmental Emergency Dose Information (SPEEDI) could have better informed citizens on when and where to evacuate during the first days after the Tohoku quake and tsunami destroyed safety systems at the Fukushima Daiichi nuclear power plant, and could have also given those trying to piece together what happened inside the reactors important forensic evidence.

At a news conference, Sato said, “A big problem lies in the fact that we failed to fully share the information soon after the nuclear disaster broke out.”

Well, yeah, that–and that you erased it.

Not to worry though, the government “reprimanded” its supervising officials and also “issued strong warnings” to the two government employees that actually did the deleting. So, citizens of Northern Japan, we’re good?

“Let’s Eat Cesium Beef”

That is (as translated by EXSKF) the name of an event in Iwate, Japan designed to encourage people to eat local beef known to be contaminated with radioactive cesium from Fukushima’s fallout.

No, this did not appear in a Japanese version of The Onion (Tamanegi?), this a real event as reported by Kyodo News in a series called “New Happiness in Japan.” Apparently, happiness is knowing you’re only poisoning your children a little bit. . . because there were kids at this thing.

The event was, uh, cooked up by the head of a meat-packing company to show a group of his regular customers–including young couples with kids–that beef containing radioactive cesium, but at levels lower than the provisional safety limits, still tasted OK.

According to the source of the translation, this story has people all over Japan shaking their heads wondering what this meat packer could have been thinking, but there have been several stories over the past year documenting even more official Japanese government efforts to get citizens to consume agricultural products from Fukushima and surrounding regions.

Imagine a nuclear-free Japan

Soon, you won’t have to imagine that, either. The last of Japan’s 50 commercial reactors still online will soon shut down.

Wait? Fifty? Wasn’t it 54? Well, earlier this month, Japan removed the four damaged reactors at Fukushima Daiichi from their official list of the country’s commercial reactors.

Probably wise.

Oh, and, notice, also no mass hysteria. The radiation that has contaminated air, water, and land might have many Japanese very worried, but the country has managed to handle the reduced electrical generating capacity remarkably well. They did this thing called “conservation.” Been doing it for over a year now. Think of all the dogs and cats that have been spared. . . not to mention the salp.

Something Fishy: CRS Report Downplays Fukushima’s Effect on US Marine Environment

japan

(photo: JanneM)

Late Thursday, the United States Coast Guard reported that they had successfully scuttled the Ryou-Un Maru, the Japanese “Ghost Ship” that had drifted into US waters after being torn from its moorings by the tsunami that followed the Tohoku earthquake over a year ago. The 200-foot fishing trawler, which was reportedly headed for scrap before it was swept away, was seen as potentially dangerous as it drifted near busy shipping lanes.

Coincidentally, the “disappearing” of the Ghost Ship came during the same week the Congressional Research Service (CRS) released its report on the effects of the Fukushima Daiichi nuclear disaster on the US marine environment, and, frankly, the metaphor couldn’t be more perfect. The Ryou-Un Maru is now resting at the bottom of the ocean–literally nothing more to see there, thanks to a few rounds from a 25mm Coast Guard gun–and the CRS hopes to dispatch fears of the radioactive contamination of US waters and seafood with the same alacrity.

But while the Ghost Ship was not considered a major ecological threat (though it did go down with around 2,000 gallons of diesel fuel in its tanks), the US government acknowledges that this “good luck ship” (a rough translation of its name) is an early taste of the estimated 1.5 million tons of tsunami debris expected to hit North American shores over the next two or three years. Similarly, the CRS report (titled Effects of Radiation from Fukushima Dai-ichi on the U.S. Marine Environment [PDF]) adopts an overall tone of “no worries here–its all under control,” but a closer reading reveals hints of “more to come.”

Indeed, the report feels as it were put through a political rinse cycle, limited both in the strength of its language and the scope of its investigation. This tension is evident right from the start–take, for example, these three paragraphs from the report’s executive summary:

Both ocean currents and atmospheric winds have the potential to transport radiation over and into marine waters under U.S. jurisdiction. It is unknown whether marine organisms that migrate through or near Japanese waters to locations where they might subsequently be harvested by U.S. fishermen (possibly some albacore tuna or salmon in the North Pacific) might have been exposed to radiation in or near Japanese waters, or might have consumed prey with accumulated radioactive contaminants.

High levels of radioactive iodine-131 (with a half-life of about 8 days), cesium-137 (with a half-life of about 30 years), and cesium-134 (with a half-life of about 2 years) were measured in seawater adjacent to the Fukushima Dai-ichi site after the March 2011 events. EPA rainfall monitors in California, Idaho, and Minnesota detected trace amounts of radioactive iodine, cesium, and tellurium consistent with the Japanese nuclear incident, at concentrations below any level of concern. It is uncertain how precipitation of radioactive elements from the atmosphere may have affected radiation levels in the marine environment.

Scientists have stated that radiation in the ocean very quickly becomes diluted and would not be a problem beyond the coast of Japan. The same is true of radiation carried by winds. Barring another unanticipated release, radioactive contaminants from Fukushima Dai-ichi should be sufficiently dispersed over time that they will not prove to be a serious health threat elsewhere, unless they bioaccumulate in migratory fish or find their way directly to another part of the world through food or other commercial products.

Winds and currents have “the potential” to transport radiation into US waters? Winds–quite measurably–already have, and computer models show that currents, over the next couple of years, most certainly will.

Are there concentrations of radioisotopes that are “below concern?” No reputable scientist would make such a statement. And if monitors in the continental United States detected radioactive iodine, cesium and tellurium in March 2011, then why did they stop the monitoring (or at least stop reporting it) by June?

The third paragraph, however, wins the double-take prize. Radiation would not be a problem beyond the coast? Fish caught hundreds of miles away would beg to differ. “Barring another unanticipated release. . . ?” Over the now almost 13 months since the Fukushima crisis began, there have been a series of releases into the air and into the ocean–some planned, some perhaps unanticipated at the time, but overall, the pattern is clear, radioactivity continues to enter the environment at unprecedented levels.

And radioactive contaminants “should be sufficiently dispersed over time, unless they bioaccumulate?” Unless? Bioaccumulation is not some crazy, unobserved hypothesis, it is a documented biological process. Bioaccumulation will happen–it will happen in migratory fish and it will happen as under-policed food and commercial products (not to mention that pesky debris) make their way around the globe.

Maybe that is supposed to be read by inquiring minds as the report’s “please ignore he man behind the curtain” moment–an intellectual out clause disguised as an authoritative analgesic–but there is no escaping the intent. Though filled with caveats and counterfactuals, the report is clearly meant to serve as a sop to those alarmed by the spreading ecological catastrophe posed by the ongoing Fukushima disaster.

The devil is in the details–the dangers are in the data

Beyond the wiggle words, perhaps the most damning indictment of the CRS marine radiation report can be found in the footnotes–or, more pointedly, in the dates of the footnotes. Though this report was released over a year after the Tohoku earthquake and tsunami triggered the Fukushima nightmare, the CRS bases the preponderance of its findings on information generated during the disaster’s first month. In fact, of the document’s 29 footnotes, only a handful date from after May 2011–one of those points to a CNN report (authoritative!), one to a status update on the Fukushima reactor structures, one confirms the value of Japanese seafood imports, three are items tracking the tsunami debris, and one directs readers to a government page on FDA radiation screening, the pertinent part of which was last updated on March 28 of last year.

Most crucially, the parts of the CRS paper that downplay the amounts of radiation measured by domestic US sensors all cite data collected within the first few weeks of the crisis. The point about radioisotopes being “below any level of concern” comes from an EPA news release dated March 22, 2011–eleven days after the earthquake, only six days after the last reported reactor explosion, and well before so many radioactive releases into the air and ocean. It is like taking reports of only minor flooding from two hours after Hurricane Katrina passed over New Orleans, and using them as the standard for levee repair and gulf disaster planning (perhaps not the best example, as many have critiqued levee repairs for their failure to incorporate all the lessons learned from Katrina).

It now being April of 2012, much more information is available, and clearly any report that expects to be called serious should have included at least some of it.

By October of last year, scientists were already doubling their estimates of the radiation pushed into the atmosphere by the Daiichi reactors, and in early November, as reported here, France’s Institute for Radiological Protection and Nuclear Safety issued a report showing the amount of cesium 137 released into the ocean was 30 times greater than what was stated by TEPCO in May. Shockingly, the Congressional Research Service does not reference this report.

Or take the early March 2012 revelation that seaweed samples collected from off the coast of southern California show levels of radioactive iodine 131 500 percent higher than those from anywhere else in the US or Canada. It should be noted that this is the result of airborne fallout–the samples were taken in mid-to-late-March 2011, much too soon for water-borne contamination to have reached that area–and so serves to confirm models that showed a plume of radioactive fallout with the greatest contact in central and southern California. (Again, this specific report was released a month before the CRS report, but the data it uses were collected over a year ago.)

Then there are the food samples taken around Japan over the course of the last year showing freshwater and sea fish–some caught over 200 kilometers from Fukushima–with radiation levels topping 100 becquerels per kilogram (one topping 600 Bq/kg).

And the beat goes on

This information, and much similar to it, was all available before the CRS released its document, but the report also operates in a risibly artificial universe that assumes the situation at Fukushima Daiichi has basically stabilized. As a sampling of pretty much any week’s news will tell you, it has not. Take, for example, this week:

About 12 tons of water contaminated with radioactive strontium are feared to have leaked from the Fukushima No. 1 plant into the Pacific Ocean, Tepco said Thursday.

The leak occurred when a pipe broke off from a joint while the water was being filtered for cesium, Tokyo Electric Power Co. said.

The system doesn’t remove strontium, and most of the water apparently entered the sea via a drainage route, Tepco added.

The water contained 16.7 becquerels of cesium per cu. centimeter and tests are under way to determine how much strontium was in it, Tepco said.

This is the second such leak in less than two weeks, and as Kazuhiko Kudo, a professor of nuclear engineering at Kyushu University who visited Fukushima Daiichi twice last year, noted:

There will be similar leaks until Tepco improves equipment. The site had plastic pipes to transfer radioactive water, which Tepco officials said are durable and for industrial use, but it’s not something normally used at nuclear plants. Tepco must replace it with metal equipment, such as steel.

(The plastic tubes–complete with the vinyl and duct tape patch–can be viewed here.)

And would that the good people at the Congressional Research Service could have waited to read a report that came out the same day as theirs:

Radioactive material from the Fukushima nuclear disaster has been found in tiny sea creatures and ocean water some 186 miles (300 kilometers) off the coast of Japan, revealing the extent of the release and the direction pollutants might take in a future environmental disaster.

In some places, the researchers from Woods Hole Oceanographic Institution (WHOI) discovered cesium radiation hundreds to thousands of times higher than would be expected naturally, with ocean eddies and larger currents both guiding the “radioactive debris” and concentrating it.

Or would that the folks at CRS had looked to their fellow government agencies before they went off half-cocked. (The study above was done by researchers at Woods Hole and written up in the journal of the National Academy of Sciences.) In fact, it appears the CRS could have done that. In its report, CRS mentions that “Experts cite [Fukushima] as the largest recorded release of radiation to the ocean,” and the source for that point is a paper by Ken Buesseler–the same Ken Buesseler that was the oceanographer in charge of the WHOI study. Imagine what could have been if the Congressional Research Service had actually contacted the original researcher.

Can openers all around

Or perhaps it wouldn’t have mattered. For if there is one obvious takeaway from the CRS paper, beyond its limits of scope and authority, that seeks to absolve it of all other oversights–it is its unfailing confidence in government oversight.

Take a gander at the section under the bolded question “Are there implications for US seafood safety?”:

It does not appear that nuclear contamination of seafood will be a food safety problem for consumers in the United States. Among the main reasons are that:

  • damage from the disaster limited seafood production in the affected areas,
  • radioactive material would be diluted before reaching U.S. fishing grounds, and
  • seafood imports from Japan are being examined before entry into the United States.

According to the U.S. Food and Drug Administration (FDA), because of damage from the earthquake and tsunami to infrastructure, few if any food products are being exported from the affected region. For example, according to the National Federation of Fisheries Cooperative Associations, the region’s fishing industry has stopped landing and selling fish. Furthermore, a fishing ban has been enforced within a 2-kilometer radius around the damaged nuclear facility.

So, the Food and Drug Administration is relying on the word of an industry group and a Japanese government-enforced ban that encompasses a two-kilometer radius–what link of that chain is supposed to be reassuring?

Last things first: two kilometers? Well, perhaps the CRS should hire a few proofreaders. A search of the source materials finds that the ban is supposed to be 20-kilometers. Indeed, the Japanese government quarantined the land for a 20-kilometer radius. The US suggested evacuation from a 50-mile (80-kilometer) radius. The CRS’s own report notes contaminated fish were collected 30 kilometers from Fukushima. So why is even 20 kilometers suddenly a radius to brag about?

As for a damaged industry not exporting, numerous reports show the Japanese government stepping in to remedy that “problem.” From domestic PR campaigns encouraging the consumption of foodstuffs from Fukushima prefecture, to the Japanese companies selling food from the region to other countries at deep discounts, to the Japanese government setting up internet clearing houses to help move tainted products, all signs point to a power structure that sees exporting possibly radioactive goods as essential to its survival.

The point on dilution, of course, not only ignores the way many large scale fishing operations work, it ignores airborne contamination and runs counter to the report’s own acknowledgment of bioaccumulation.

But maybe the shakiest assertion of all is that the US Food and Drug Administration will stop all contaminated imports at the water’s edge. While imports hardly represent the total picture when evaluating US seafood safety, taking this for the small slice of the problem it covers, it engenders raised eyebrows.

First there is the oft-referenced point from nuclear engineer Arnie Gundersen, who said last summer that State Department officials told him of a secret agreement between Japan and Secretary Hilary Clinton guaranteeing the continued importation of Japanese food. While independent confirmation of this pact is hard to come by, there is the plain fact that, beyond bans on milk, dairy products, fruits and vegetables from the Fukushima region issued in late March 2011, the US has proffered no other restrictions on Japanese food imports (and those few restrictions for Japanese food were lifted for US military commissaries in September).

And perhaps most damning, there was the statement from an FDA representative last April declaring that North Pacific seafood was so unlikely to be contaminated that “no sampling or monitoring of our fish is necessary.” The FDA said at the time that it would rely on the National Oceanographic and Atmospheric Administration (NOAA) to tell it when they should consider testing seafood, but a NOAA spokesperson said it was the FDA’s call.

Good. Glad that’s been sorted out.

The Congressional Research Service report seems to fall victim to a problem noted often here–they assume a can opener. As per the joke, the writers stipulate a functioning mechanism before explaining their solution. As many nuclear industry-watchers assume a functioning regulatory process (as opposed to a captured Nuclear Regulatory Commission, an industry-friendly Department of Energy, and industry-purchased members of Congress) when speaking of the hypothetical safety of nuclear power, the CRS here assumes an FDA interested first and foremost in protecting the general public, instead of an agency trying to strike some awkward “balance” between health, profit and politics. The can opener story is a joke; the effects of this real-life example are not.

Garbage in, garbage out

The Congressional Research Service, a part of the Library of Congress, is intended to function as the research and analysis wing of the US Congress. It is supposed to be objective, it is supposed to be accurate, and it is supposed to be authoritative. America needs the CRS to be all of those things because the agency’s words are expected to inform federal legislation. When the CRS shirks its responsibility, shapes its words to fit comfortably into the conventional wisdom, or shaves off the sharp corners to curry political favor, the impact is more than academic.

When the CRS limits its scope to avoid inconvenient truths, it bears false witness to the most important events of our time. When the CRS pretends other government agencies are doing their jobs–despite documentable evidence to the contrary–then they are not performing theirs. And when the CRS issues a report that ignores the data and the science so that a few industries might profit, it is America that loses.

The authors of this particular report might not be around when the bulk of the cancers and defects tied to the radiation from Fukushima Daiichi present in the general population, but this paper’s integrity today could influence those numbers tomorrow. Bad, biased, or bowdlerized advice could scuttle meaningful efforts to make consequential policy.

If the policy analysts that sign their names to reports like this don’t want their work used for scrap paper, then maybe they should take a lesson from the Ryou-Un Maru. Going where the winds and currents take you makes you at best a curiosity, and more likely a nuisance–just so much flotsam and jetsam getting in the way of actual business. Works of note come with moral rudders, anchored to best data available; without that, the report might as well just say “good luck.”

Fukushima One Year On: Many Revelations, Few Surprises

Satellite image of Fukushima Daiichi showing damage on 3/14/11. (photo: digitalglobe)

One year on, perhaps the most surprising thing about the Fukushima crisis is that nothing is really that surprising. Almost every problem encountered was at some point foreseen, almost everything that went wrong was previously discussed, and almost every system that failed was predicted to fail, sometimes decades earlier. Not all by one person, obviously, not all at one time or in one place, but if there is anything to be gleaned from sorting through the multiple reports now being released to commemorate the first anniversary of the Tohoku earthquake and tsunami–and the start of the crisis at Fukushima Daiichi–it is that, while there is much still to be learned, we already know what is to be done. . . because we knew it all before the disaster began.

This is not to say that any one person–any plant manager, nuclear worker, TEPCO executive, or government official–had all that knowledge on hand or had all the guaranteed right answers when each moment of decision arose. We know that because the various timelines and reconstructions now make it clear that several individual mistakes were made in the minutes, hours and days following the dual natural disasters. Instead, the analysis a year out teaches us that any honest examination of the history of nuclear power, and any responsible engagement of the numerous red flags and warnings would have taken the Fukushima disasters (yes, plural) out of the realm of “if,” and placed it squarely into the category of “when.”

Following closely the release of findings by the Rebuild Japan Foundation and a report from the Union of Concerned Scientists (both discussed here in recent weeks), a new paper, “Fukushima in review: A complex disaster, a disastrous response,” written by two members of the Rebuild Japan Foundation for the Bulletin of the Atomic Scientists, provides a detailed and disturbing window on a long list of failures that exacerbated the problems at Japan’s crippled Fukushima Daiichi facility. Among them, they include misinterpreting on-site observations, the lack of applicable protocols, inadequate industry guidelines, and the absence of both a definitive chain of command and the physical presence of the supposed commanders. But first and foremost, existing at the core of the crisis that has seen three reactor meltdowns, numerous explosions, radioactive contamination of land, air and sea, and the mass and perhaps permanent evacuation of tens of thousands of residents from a 20 kilometer exclusion zone, is what the Bulletin paper calls “The trap of the absolute safety myth”:

Why were preparations for a nuclear accident so inadequate? One factor was a twisted myth–a belief in the “absolute safety” of nuclear power. This myth has been propagated by interest groups seeking to gain broad acceptance for nuclear power: A public relations effort on behalf of the absolute safety of nuclear power was deemed necessary to overcome the strong anti-nuclear sentiments connected to the atomic bombings of Hiroshima and Nagasaki.

Since the 1970s, disaster risk has been deliberately downplayed by what has been called Japan’s nuclear mura (“village” or “community”)–that is, nuclear advocates in industry, government, and academia, along with local leaders hoping to have nuclear power plants built in their municipalities. The mura has feared that if the risks related to nuclear energy were publicly acknowledged, citizens would demand that plants be shut down until the risks were removed. Japan’s nuclear community has also feared that preparation for a nuclear accident would in itself become a source of anxiety for people living near the plants.

The power of this myth, according to the authors, is strong. It led the government to actively cancel safety drills in the wake of previous, smaller nuclear incidents–claiming that they would cause “unnecessary anxiety”–and it led to a convenient classification for the events of last March 11:

The word used then to describe risks that would cause unnecessary public anxiety and misunderstanding was “unanticipated.” Significantly, TEPCO has been using this very word to describe the height of the March 11 tsunami that cut off primary and backup power to Fukushima Daiichi.

Ignoring for this moment the debate about what cut off primary power, the idea that the massive size of the tsunami–not to mention what it would do to the nuclear plant–was unanticipated is, as this paper observes, absurd. Studies of a 9th Century tsunami, as well as an internal report by TEPCO’s own nuclear energy division, showed there was a definite risk of large tsunamis at Fukushima. TEPCO dismissed these warnings as “academic.” The Japanese government, too, while recommending nuclear facilities consider these findings, did not mandate any changes.

Instead, both the industry and the government chose to perpetuate the “safety myth,” fearing that any admission of a need to improve or retrofit safety systems would result in “undue anxiety”–and, more importantly, public pressure to make costly changes.

Any of that sound familiar?

“No one could have possibly anticipated. . .” is not just the infamous Bush administration take on the attacks of 9/11/2001, it has become the format for many of the current excuses on why a disaster like Fukushima could happen once, and why little need now be done to make sure it doesn’t happen again.

In fact, reading the BAS Fukushima review, it is dishearteningly easy to imagine you are reading about the state of the American nuclear reactor fleet. Swapping in places like Three Mile Island, Palisades, Browns Ferry, Davis-Besse, San Onofre, Diablo Canyon, Vermont Yankee, and Indian Point for the assorted Japanese nuclear power plants is far too easy, and replacing the names of the much-maligned Japanese regulatory agencies with “Nuclear Regulatory Commission” and “Department of Energy” is easier still.

As observed a number of times over the last year, because of unusual events and full-on disasters at many of the aging nuclear plants in the US, American regulators have a pretty good idea of what can go wrong–and they have even made some attempts to suggest measures should be taken to prevent similar events in the future. But industry pressure has kept those suggestions to a minimum, and the cozy relationship between regulators and the regulated has diluted and dragged out many mandates to the point where they serve more as propaganda than prophylaxis.

Even with the Fukushima disaster still visible and metastasizing, requiring constant attention from every level of Japanese society and billions of Yen in emergency spending, even with isotopes from the Daiichi reactors still showing up in American food, air and water, and even with dozens of US reactors operating under circumstances eerily similar to pre-quake Fukushima, the US Nuclear Regulatory Commission has treated its own post-Fukushima taskforce recommendations with a pointed lack of urgency. And the pushback from the nuclear industry and their bought-and-paid-for benefactors in the government at the mere hint of new regulations or better enforcement indicates that America might have its own safety myth trap–though, in the US, it is propagated by the generations-old marketing mantra, “Clean, safe and too cheap to meter.”

Mythical, too, is the notion that the federal government has the regulatory infrastructure or political functionality to make any segment of that tripartite lie ring closer to true. From NRC chairman Gregory Jaczko’s bizarre faith in a body that has failed to act on his pre-Fukushima initiatives while actively conspiring to oust him, to the Union of Concerned Scientists’ assuming a regulatory “can opener,” the US may have a bigger problem than the absolute safety myth, and that would be the myth of a government with the will or ability to assure that safety.

Which, of course, is more than a shame–it’s a crime. With so many obvious flaws in the technology–from the costs of mining, importing and refining fuel to the costs of building an maintaining reactors, from the crisis in spent fuel storage to the “near misses” and looming disasters at aging facilities–with so many other industrialized nations now choosing to phase out nuclear and ramp up renewables, and with the lessons of Fukushima now so loud and clear, the path forward for the US should not be difficult to delineate.

Nuclear power is too dirty, too dangerous and too expensive to justify any longer. No one in America should assume that the willpower or wherewithal to manage these problems would magically appear when nothing sufficient has materialized in the last fifty years. Leaders should not mistake luck for efficacy, nor should they pretend birds of a feather are unrelated black swans. They know better, and they knew all they needed to know long before last year’s triple meltdown.

Nuclear is not in a “renaissance,” it is in its death throes. Now is the time to cut financial losses and guard against more precious ones. The federal government should take the $54.5 billion it pledged to the nuclear industry and use it instead to increase efficiency, conservation, and non-fissile/non-fossil energy innovation.

But you already knew that.

* * *

Extra Credit:

Compare and contrast this 25-minute video from Al Jazeera and the Center for Investigative Reporting with what you read in the Bulletin of the Atomic Scientists report mentioned above. For that matter, contrast it with the two longer but somehow less rigorous videos from Frontline, which were discussed here and here.

Also, there are events all over the globe this weekend to commemorate the first anniversary of the Tohoku earthquake and the nuclear crisis it triggered. To find an event in your area, see this list from Beyond Nuclear and the Freeze our Fukushimas Campaign.

Frontline’s Fukushima “Meltdown” Perpetuates Industry Lie That Tsunami, Not Quake, Started Nuclear Crisis

Fukushima Daiichi as seen on March 16, 2011. (photo: Digital Globe via Wikipedia)

In all fairness, “Inside Japan’s Nuclear Meltdown,” the Frontline documentary that debuted on US public television stations last night (February 28), sets out to accomplish an almost impossible task: explain what has happened inside and around Japan’s Fukushima Daiichi nuclear facility since a massive earthquake and tsunami crippled reactors and safety systems on March 11, 2011–and do so in 53 minutes. The filmmakers had several challenges, not the least of which is that the Fukushima meltdowns are not a closed case, but an ever-evolving crisis. Add to that the technical nature of the information, the global impact of the disaster, the still-extant dangers in and around the crippled plant, the contentious politics around nuclear issues, and the refusal of the Tokyo Electric Power Company (TEPCO) to let its employees talk either to reporters or independent investigative bodies, and it quickly becomes apparent that Frontline had a lot to tackle in order to practice good journalism.

But if the first rule of reporting is anything like medicine–“do no harm”–than Frontline’s Fukushima coverage is again guilty of malpractice. While “Inside Japan’s Nuclear Meltdown” is not the naked apologia for the nuclear industry that Frontline’s January offering, “Nuclear Aftershocks,” was, some of the errors and oversights of this week’s episode are just as injurious to the truth.

And none more so than the inherent contradiction that aired in the first minutes of Tuesday’s show.

“Inside'” opens on “March 11, 2011 – Day 1.” Over shaking weather camera shots of Fukushima’s four exhaust towers, the narrator explains:

The earthquake that shook the Fukushima Dai-ichi nuclear power plant was the most powerful to strike Japan since records began. The company that operates the plant, TEPCO, has forbidden its workers from speaking publicly about what followed.

But one year on, they are starting to tell their stories. Some have asked for their identities to be hidden for fear of being fired.

One such employee (called “Ono” in the transcript) speaks through an interpreter: “I saw all the pipes fixed to the wall shifting and ripping off.”

Then the power went out, but as Frontline’s narrator explains:

The workers stayed calm because they knew Japanese power plants are designed to withstand earthquakes. The reactors automatically shut down within seconds. But the high radioactivity of nuclear fuel rods means they generate intense heat even after a shutdown. So backup generators kicked in to power the cooling systems and stop the fuel rods from melting.

Frontline then tells of the massive tsunami that hit Fukushima about 49 minutes after the earthquake:

The biggest of the waves was more than 40 feet high and traveling at over 100 miles an hour.

. . . .

At 3:35 PM, the biggest of the waves struck. It was more than twice the height of the plant’s seawall.

. . . .

Most of the backup diesel generators needed to power the cooling systems were located in basements. They were destroyed by the tsunami waters, meaning the workers had no way of keeping the nuclear fuel from melting.

The impression left for viewers is that while the quake knocked out Fukushima’s primary power, the diesel backup generators were effectively cooling the reactors until the tsunami flooded the generators.

It’s a good story, as stories go, and one that TEPCO and their nuclear industry brethren are fond of telling to anyone and everyone within the sound of their profit-enhanced, lobbyist-aided voices. They have told it so often that it seems to be part of the whole Fukushima narrative that less-interested parties can recount without so much as glancing at their talking points. Indeed, even Frontline’s writers thought they could toss it out there without any debate and then move on. One problem with that story, though–it’s not true.

I personally saw pipes that had come apart and I assume that there were many more that had been broken throughout the plant. There’s no doubt that the earthquake did a lot of damage inside the plant… I also saw that part of the wall of the turbine building for reactor one had come away. That crack might have affected the reactor.

Those are the words of a Fukushima maintenance worker who requested anonymity when he told his story to reporters for Great Britain’s Independent last August. That worker recalled hissing, leaking pipes in the immediate aftermath of the quake.

Another TEPCO employee, a Fukushima technician, also spoke to the Independent:

It felt like the earthquake hit in two waves, the first impact was so intense you could see the building shaking, the pipes buckling, and within minutes I saw pipes bursting. Some fell off the wall…

Someone yelled that we all needed to evacuate. But I was severely alarmed because as I was leaving I was told and I could see that several pipes had cracked open, including what I believe were cold water supply pipes. That would mean that coolant couldn’t get to the reactor core. If you can’t sufficiently get the coolant to the core, it melts down. You don’t have to have to be a nuclear scientist to figure that out.

Workers also describe seeing cracks and holes in reactor one’s containment building soon after the earthquake, and it has been reported that a radiation alarm went off a mile away from Fukushima Daiichi at 3:29 PM JST–43 minutes after the quake, but 6 minutes before the tsunami hit the plant’s seawall.

Indeed, much of the data available, as well as the behavior of Fukushima personnel, makes the case that something was going horribly wrong before the tsunami flooded the backup generators:

Mitsuhiko Tanaka, a former nuclear plant designer, describes what occurred on 11 March as a loss-of-coolant accident. “The data that Tepco has made public shows a huge loss of coolant within the first few hours of the earthquake. It can’t be accounted for by the loss of electrical power. There was already so much damage to the cooling system that a meltdown was inevitable long before the tsunami came.”

He says the released data shows that at 2.52pm, just after the quake, the emergency circulation equipment of both the A and B systems automatically started up. “This only happens when there is a loss of coolant.” Between 3.04 and 3.11pm, the water sprayer inside the containment vessel was turned on. Mr Tanaka says that it is an emergency measure only done when other cooling systems have failed. By the time the tsunami arrived and knocked out all the electrical systems, at about 3.37pm, the plant was already on its way to melting down.

In fact, these conclusions were actually corroborated by data buried in a TEPCO briefing last May–and they were of course corroborated by “Ono” in the opening minutes of Frontline’s report–but rather than use their documentary and their tremendous access to eyewitnesses as a way of starting a discussion about what really went wrong at Fukushima Daiichi, Frontline instead moved to end the debate by repeating the industry line as a kind of shorthand gospel.

This is not nitpicking. The implications of this point–the debate about whether the nuclear reactor, its cooling systems and containment (to say nothing yet of its spent fuel pools and their safety systems) were seriously damaged by the earthquake–are broad and have far-reaching consequences for nuclear facilities all over the globe.

To put it mildly, the pipes at Fukushima were a mess. Over the decade prior to the Tohoku quake, TEPCO was told repeatedly about the poor state of the plant’s pipes, ducts, and couplings. Fukushima was sighted numerous times for deteriorating joints, faked inspections and shoddy repairs. Technicians talk of how the systems didn’t match the blueprints, and that pipes had to be bent to match up and then welded together.

Fukushima was remarkably old, but it is not remarkable. Plants across Japan are of the same generations-old design. So are many nuclear reactors here in the United States. If the safety systems of a nuclear reactor can be dangerously compromised by seismic activity alone, then all of Japan’s reactors–and a dozen or more across the US–are one good shake away from a Fukushima-like catastrophe. And that means that those plants need to be shut down for extensive repairs and retrofits–if not decommissioned permanently.

The stakes for the nuclear industry are obviously very high. You can see how they would still be working overtime to drown out the evidence and push the “freak one-two punch” narrative. But it’s not the true story–indeed, it is dangerous lie–so it is hard to reconcile why the esteemed and resourceful journalists at Frontline would want to tell it.

* * *

That was not the only problem with Tuesday’s episode, but it is one of the most pernicious–and it presents itself so obviously right at the start of “Inside Japan’s Nuclear Meltdown.” Also problematic was the general impression left at the end of the program. While mention is made of the 100,000 displaced by the 12-mile Fukushima exclusion zone, nothing is said about the broader health implications for the entre country–and indeed for the rest of the world as radioactive isotopes from Fukushima spread well beyond Japan’s borders.

Alas, though Frontline tells of the massive amounts of seawater pumped into the damaged facility, nothing much is said about the contaminated water that is leaving the area, spreading into groundwater, rivers and the Pacific Ocean. The show talks of the efforts to open a valve to relieve pressure inside one reactor, but does not address growing evidence that the lid of the containment vessel likely lifted off at some point between the tsunami and the explosion in building one. And there is a short discussion of bringing the now-melted-down reactors to “cold shutdown,” but there is no mention of the recent “re-criticality“–the rising temperatures inside one of the damaged cores.

And to that point–and to a point often made in these columns–this disaster is not over. “Japan’s Meltdown” is not in the past–it is still a dangerous and evolving crisis. The “devil’s chain reaction” that could have required the evacuation of Tokyo is still very much a possibility should another earthquake jolt the region. . . which itself is considered likely.

Sadly–disturbingly–Frontline’s Fukushima tick-tock ends leaving the opposite impression. They acknowledge the years of work that lie ahead to clean up the mess, but the implication is that the path is clear. They acknowledge the tragedy, but treat it as does one of the film’s subjects, who is shown at Frontline’s end at a memorial for his lost family–it is something to be mourned, commemorated and honored.

But Fukushima’s crisis is not buried and gone, and though radioactive water has been swept out to sea and radioactive fallout has been blown around the world, the real danger of Fukushima Daiichi and nuclear plants worldwide is not gone with the wind.

As noted above, it is a difficult task to accurately and effectively tell this sweeping story in less than an hour–but the filmmakers should have acknowledged that and either refocused their one show, or committed to telling the story over a longer period of time. Choosing instead to use the frame of the nuclear industry and the governments that seek its largess is not good journalism because it has the potential to do much harm.

New Fukushima Report: “Devil’s Chain Reaction” Could Wipe Out Tokyo

Map of the east coast of Japan showing the distance between Tokyo and Fukushima Daiichi, 150 miles to the north.

A new independent report on the Fukushima Daiichi Nuclear disaster reveals that Japan’s Prime Minister Naoto Kan feared events following the March 11, 2011 Tohoku earthquake and tsunami would require the evacuation of Tokyo. The report, conducted by the Rebuild Japan Foundation, a new policy organization comprised of college professors, journalists and lawyers, sheds new light on just how in-the-dark many were in the wake of natural disasters that left the Fukushima nuclear facility with damaged safety systems and without internal or external power.

The investigation underscores the conflicting interests of the Japanese government, the directors of Tokyo Electric Power Company (TEPCO–Fukushima’s owner and operator), and those on the scene at the crippled nuclear plant. Masataka Shimizu, president of TEPCO, is said to have ordered all of Fukushima Daiichi’s employees to evacuate the facility in the days after March 11, but Daiichi’s plant manager, Massao Yoshida, argued that he could get the damaged reactors under control if he and nuclear workers remained. PM Kan eventually ordered a skeleton crew to stay at the plant, fearing that Fukushima Daiichi, the nearby Fukushima Daini and a third nuclear facility could spiral out of control and start what has been translated as a “devil’s chain reaction” or a “demonic chain reaction” that would necessitate evacuation of the nation’s capital, a city of 13 million people, 150 miles south of Fukushima prefecture.

Given this new window on internal deliberations (far too nice a word–these were likely frantic, heated arguments) in Japan, the decision made by US Nuclear Regulatory Commission Chairman Gregory Jaczko within days of the quake to recommend evacuating American citizens from an area 50 miles around Fukushima seems downright conservative. In recent days, nuclear power proponents have used this action as their latest volley in their ongoing push to oust Jaczko and replace him with a more servile chief regulator.

Interesting, too, the objections of TEPCO’s president to the plan to pour seawater on the melting Fukushima reactors and boiling spent fuel storage pools. This last-gasp measure, apparently the idea of Yoshida, the Daiichi manager, is believed to have somewhat cooled the reactors and at least kept the fuel pools from completely emptying–which would have resulted in a much more serious outcome (hard to believe, but true)–though it should be noted that the radioactive runoff is now contaminating the ground, groundwater, rivers and the ocean around Fukushima. TEPCO brass no doubt did not want to use seawater because its corrosive effects would make it impossible to ever restart any of the Daiichi reactors (again, ridiculous in hindsight, but not hard to imagine inside the profit-above-people distortion bubble that exists at companies like TEPCO). (UPDATE: Japan Times reports Kan was reticent to use anything but fresh water, but Yoshida ignored him and went ahead with the use of seawater.)

Other recent revelations–about how close Fukushima Daini came to a meltdown of its own, about how the Fukushima region is now more seismically unstable, and that the government had dire assessments of the disaster that it worked hard to keep secret–serve to buttress Naoto Kan’s fears that a string of nuclear disasters was a distinct possibility. And it should also serve as a warning that those fears are still a possibility if the region’s nuclear plants–whether or not they are still functioning–are not decommissioned and contained.

And all this information, and the new details on the lack of trust between the Japanese government and TEPCO, also paints a more nuanced–and, honestly, disturbing–picture of the environment in which US officials had to make decisions.

But, perhaps most importantly, this latest report is yet another data point against the absurd assertion that Fukushima Daiichi somehow proves nuclear power’s “defense in depth” safety systems work. The assertion that Fukushima isn’t a massive disaster, just as it stands today, is ridiculous, but reading about the lack of good information in the early days of the crisis, the internal fights and the government’s fears makes it clear that things could have easily been much, much worse. While there are still real concerns about just how much radiation residents throughout Japan will be expected to absorb, and there are still many technical questions that remain unanswered, it now appears that it was only a combination of an occasionally assertive PM, the heroism of about fifty Daiichi workers and maybe some dumb luck that gave the world the relative luxury of calling Fukushima an ever-metastasizing disaster, rather than an almost-instant hell on earth.

Aftershocking: Frontline’s Fukushima Doc a Lazy Apologia for the Nuclear Industry

There is much to say about this week’s Frontline documentary, “Nuclear Aftershocks,” and some of it would even be good. For the casual follower of nuclear news in the ten months since an earthquake and tsunami triggered the massive and ongoing disaster at Japan’s Fukushima Daiichi nuclear power station, it is illuminating to see the wreckage that once was a trio of active nuclear reactors, and the devastation and desolation that has replaced town after town inside the 20-kilometer evacuation zone. And it is eye-opening to experience at ground level the inadequacy of the Indian Point nuclear plant evacuation plan. It is also helpful to learn that citizens in Japan and Germany have seen enough and are demanding their countries phase out nuclear energy.

But if you are only a casual observer of this particular segment of the news, then the Frontline broadcast also left you with a mountain of misinformation and big bowl-full of unquestioned bias.

Take, for example, Frontline correspondent Miles O’Brien’s cavalier treatment of the potential increase in Japanese cancer deaths, courtesy of the former property of the Tokyo Electric Power Company (TEPCO):

MILES O’BRIEN: When Japanese authorities set radiation levels for evacuation, they were conservative, 20 millisieverts per year. That’s the equivalent of two or three abdominal CAT scans in the same period. I asked Dr. Gen Suzuki about this.

[on camera] So at 20 millisieverts over the course of a long period of time, what is the increased cancer risk?

GEN SUZUKI, Radiation specialist, Nuclear Safety Comm.: Yeah, it’s 0.2— 0.2 percent increase in lifetime.

MILES O’BRIEN: [on camera] 0.2 percent over the course of a lifetime?

GEN SUZUKI: Yeah.

MILES O’BRIEN: So your normal risk of cancer in Japan is?

GEN SUZUKI: Is 30 percent.

MILES O’BRIEN: So what is the increased cancer rate?

GEN SUZUKI: 30.2 percent, so the increment is quite small.

MILES O’BRIEN: And yet the fear is quite high.

GEN SUZUKI: Yes, that’s true.

MILES O’BRIEN: [voice-over] People are even concerned here, in Fukushima City, outside the evacuation zone, where radiation contamination is officially below any danger level.

There was no countervailing opinion offered after this segment–which is kind of disgraceful because there is a myriad of informed, countervailing opinions out there.

Is 20 millisieverts (mSv) a year a conservative limit on exposure? Well, the Nuclear Regulatory Commission says the average annual dose for those living in the United States is 6.2 mSv, half of which is background, with the other half expected to come from diagnostic medical procedures. And according to the International Atomic Energy Agency (IAEA), the maximum additional dose for an adult before it is considered an “unacceptable risk” is one millisievert per year.

Then, to assess the cancer risk, O’Brien, practically in the same breath, changes exposure over a single year to “over the course of a long period of time”–an inexcusable muddying of the facts. One year for those who must live out their lives in northern Japan might wind up seeming like a long period of time, but it would actually be a small fraction of their lifetimes, and so would present them with only a fraction of their exposure.

So, is Dr. Gen Suzuki assessing the increased cancer risk for 20 mSv over a lifetime, a long time, or just one year? It is hard to say for sure, though, based on his estimates, it seems more like he is using a much longer timeframe than a single year. But even if his estimate really is the total expected increase in cancer deaths from the Fukushima disaster, what is he talking about? Miles O’Brien seems almost incredulous that anyone would be showing concern over a .2 percent increase, but in Japan, a .2 percent increase in cancer deaths means 2,000 more deaths. How many modern nations would find any disaster–natural or manmade–that resulted in 2,000 deaths to be negligible? For that matter, how many of the reporters, producers or crew of Frontline would feel good about rolling the dice and moving their family into an area that expects 2,000 additional fatalities?

Further, the exchange doesn’t say anything about the person who is supposed to casually endure the equivalent of three abdominal CAT scans a year (something no respectable professional would recommend without some very serious cause). The effects of radiation exposure on children are quite a bit different from the effects of the same exposure on adults–and quite a bit more troubling. And young girls are more at risk than young boys. Though the Frontline episode features many pictures of children–for instance, playing little league baseball–it never mentions their higher risks.

Also missing here, any mention that in a country now blanketed north to south in varying levels of radioactive fallout, radiation exposure is not purely external. The estimates discussed above are based on an increase in background radiation, but radioactive isotopes are inhaled with fallout-laden dust and dirt, and consumed with food from contaminated farmlands and fisheries. Outcomes will depend on the isotopes and who consumes them–radioactive Iodine concentrates in the Thyroid and has a half life of a couple of weeks; Cesium 137 tends to gravitate toward muscle and has a half-life of about 30 years. Strontium 90, which concentrates in bones, lasts almost as long. The affect of all of this needs to be factored in to any estimates of post-Fukushima morbidity.

So, as one might imagine, Dr. Suzuki’s cancer estimate, be it from his own deliberate downplay or O’Brien’s sloppy framing, is widely disputed. In fact, a quick survey of the literature might call the estimate in Frontline an absurdly low outlier.

By way of example, take findings compiled by Fairwinds Associates, an engineering and environmental consulting firm often critical of the nuclear industry. Using data from the National Academy of Science’s report on the Biological Effects of Ionizing Radiation (BEIR), Fairwinds explains that one in every 100 girls will develop cancer for every year they are exposed to that “conservative” 20 mSv of radiation. But Fairwinds believes the BEIR also underestimates the risk. Fairwinds introduces additional analysis to show that “at least one out of every 20 young girls (5%) living in an area where the radiological exposure is 20 millisieverts for five years will develop cancer in their lifetime.”

It should be noted here that five years of 20 mSv per year would equal 100 mSv lifetime exposure–the newly revised lifetime maximum set by Japan after the start of the Fukushima nuclear disaster. And some cities in northern Japan, uncomfortable with this blanket prescription, have set limits for children at one millisievert per year.

None of this information was hard to find, and all of it stems from data provided by large, respected institutions, yet, for some reason, O’Brien and Frontline felt content to let their single source set a tone of “no big deal.” Worried Japanese residents featured just after the interview with Dr. Suzuki are portrayed as broadly irrational, if not borderline hysterical.

The dismissive tenor of the medical segment carries over to several other parts of “Nuclear Aftershocks.” Take Frontline’s assessment of the German reaction to the meltdowns at Fukushima Daiichi. Chancellor Angela Merkel’s government has pledged to entirely phase out their reliance on nuclear power within the next decade. O’Brien call this decision “rash” and “hasty,” and he doesn’t qualify those adjectives as the viewpoint of one expert or another; instead, he uses them matter-of-factly, as if everyone knows that Germany is a nation of jittery, irresponsible children. The political reality–that the German government is actually pursuing a policy that is the will of the people–is treated as some sort of abomination.

Japanese anti-nuclear protestors get similar treatment from Frontline. That large demonstrations like those seen over the last ten months are a rare and special occurrence in Japan is not considered. Instead, the documentary, time and again, hints at a shadowy doomsday somewhere in the near future, a sort of end-of-civilization scenario caused by an almost instant cessation of nuclear power generation. Indeed, as the program ends, O’Brien declares that every nuclear plant in Japan will be shut down by May–and as he says this, the camera peers out the window of a slow-moving elevated train. The view is a darkened Japanese city, and as O’Brien finishes his monologue, the train grinds to a halt.

Ooh, skeddy. Was this Frontline, or Monster Chiller Horror Theater?

Yes, the end seemed that absurd. “Nuclear Aftershocks” paints a picture many members of both the nuclear and fossil fuels lobbies would love to have you believe: a sort of zero-sum, vaguely binary, cake-or-death world where every possible future holds only the oldest, dirtiest and most dangerous options for electrical power generation. You get coal, you get gas, or you get nuclear–make up your mind!

But the show, like the handmaidens of those out-dated technologies, perverts the argument by glossing over the present and omitting choices for the future. As much as many concerned citizens would like to see nuclear power disappear overnight, it will not. Germany is giving itself a decade, the US is looking to run its aging reactors for another twenty years, and even Japan, dream though they might, will likely not decommission every reactor in the next four months. There is a window–big or small depending on your point of view–but a decided period of time to shift energy priorities.

Even the nuclear advocates who appear on Frontline call nuclear power “a bridge”–but if their lobby and their fossil fuel-loving brethren have their way, it will likely be a bridge to nowhere.

“Nuclear Aftershocks” does mention Germany’s increased investment in a wind- and solar-powered future, but the show calls that shift “a bold bet” and “a risk.”

Likely the producers will argue they did not have time for a deeper exploration, but by allowing fissile and fossil fuel advocates to argue that renewables cannot meet “base load” requirements, while failing to discuss recent leaps forward in solar and wind technology, or how well Japan’s wind turbines weathered the Tohoku quake and tsunami–or, for that matter, how much Japanese citizens have been able to reduce their electrical consumption since then through basic conservation–Frontline’s creators are guilty of flat-earth-inspired editing.

Indeed, missing from almost every discussion of the future of power generation is how much we could slow the growth in demand through what is called efficiencies–conservation, passive design, changes in construction techniques, and the replacement and upgrading of an aging electric infrastructure. The Frontline documentary highlights some of the potential risks of an accident at New York’s Indian Point nuclear generating station, but it contrasts that concern with nearby New York City’s unquenchable thirst for electricity. Missing entirely from the discussion: that New York could make up for all of Indian Point’s actual output by conserving a modest amount and replacing the transmission lines that bring hydroelectric power from the north with newer, more efficient cable.

No single solution is a panacea for every region of the globe, but many alternatives need to be on the table, and they certainly ought to be in any discussion about the “aftershocks” of nuclear’s annus horribilis. It should be seen as impossible to evaluate nuclear energy without considering the alternatives–and not just the CO2-creating, hydrofracking alternatives that are the standby bugbear of those infatuated with atomic power. Coal, gas, and nuclear are our links to the past; renewables and increased efficiency are our real bridge to the future. Just as it is dishonest to evaluate the cost of any of the old-school energy technologies without also considering environmental impact and enormous government subsidies–and now, too, the costs of relocating hundreds of thousands or millions of people and treating untold numbers of future health problems–it is also misleading to treat energy funds as permanently allocated to entrenched fuels.

The billions pledged to the nuclear industry by the Obama administration dwarf the budgets and tax incentives for conservation, alternative fuels, and green technology innovation combined. Factor in the government-shouldered costs of cleanup and waste storage, not to mention the sweetheart deals granted to the hydrocarbon crowd, and you could put together a program for next-generation generation that would make the Manhattan Project look like an Our Gang play (“My dad has an old barn!” “My mom can sew curtains!”).

It is a grave disappointment that Frontline couldn’t take the same broad view. The producers will no doubt argue that they could only say so much in 50 minutes, but like Japan, Germany, and the United States, they had choices. For the governments of these industrialized nations, the choices involve their energy futures and the safety of their citizens; for the Frontline crew, their choices can either help or hinder those citizens when they need to make informed choices of their own. For all concerned, the time to make those choices is now.

It is a shame that “Nuclear Aftershocks” instead used its time to run interference for a dirty, dangerous and costly industry.

The Party Line – December 30, 2011: The Party Line, Nuclear Style

As we close out 2011, readers of this space will likely not be surprised to hear the following:

  • The crisis at Japan’s Fukushima Daiichi nuclear facility continues and continues to poison the planet;
  • Accidents and events at nuclear reactors across the United States continue at a headshaking pace (something goes wrong somewhere pretty much weekly);
  • The nuclear industry continues its full-court press against any new safety rules that might spring from lessons learned from Fukushima or the domestic events;
  • Industry-friendly regulators continue to help slow-walk new rules while also working with allies in Congress to oust the slightly more safety-minded Nuclear Regulatory Commission chair, Gregory Jaczko;
  • Chairman Jaczko continues to hope his faith in a moderate path and a captured regulatory agency will guarantee a safe nuclear future and help save his job; and
  • All of this has happened before.

Last point first: Ryan Grim has a great follow-up on this month’s attempted coup at the NRC–where four commissioners, in coordination with members of congress and nuclear industry lobbyists, have gone public with complaints about the NRC chairman, Greg Jaczko. While the commissioners have stopped short of calling for Jaczko to step down, several GOP congressmen are pressing for just that result.

As Grim reports in the Huffington Post, the effort to oust Jaczko not only continues in the wake of two congressional hearings on the matter, the whole ugly putsch closely resembles moves in the 1990s to discredit another regulation-minded nuclear regulator. And the stories even include some of the same players.

Like with the current “scandal,” the plot is not a simple one to summarize (so please read Grim’s detailed story), but the highlights include a former National Resources Defense Council scientist, Terry Lash, who was appointed by the Clinton administration to run the Department of Energy’s Office of Nuclear Energy, his deputy, one William Magwood, and a staffer for the very nuke-industry-financed Sen. Pete Domenici (R-NM) named Alex Flint.

Thanks to an exploited possible gaffe in protocol and the coordinated work of Domenici, Magwood and Flint, Terry Lash was eventually pushed aside. And Magwood would take over the nuclear division at DOE, first as acting director, and then, under George W. Bush, as the office’s permanent head.

And yes, you’ve read two of those names here before. Bill Magwood is a commissioner at the NRC, a former consultant to the nuclear industry, and one of the most vocal critics of Chairman Jaczko. Alex Flint has run through the classic DC regulatory revolving door, moving between Senate staffer, nuclear industry lobbyist and back, most recently settling in as the top lobbyist for the Nuclear Energy Institute (NEI), the industry’s largest trade association.

The story is as troubling as it is tired. A government agency manipulated by the industry it is supposed to regulate. An industry, protected by bought politicians, avoids accountability while profiting from government largess. Some of that profit is then turned around to lobby and buy another administration’s worth of officials.

And an agency chief who is maybe too slow to realize that the industry and its surrogates will work relentlessly to undermine him and the regulatory body he tries to command.

The lessons here seem obvious and familiar. . . and yet they seem to be lost on so many.

It has been all-too-rare to see broad coverage of the US nuclear industry in the establishment press, yet, during the first week of December, nearly every news organ was Johnny-on-the-spot, repeating the industry storyline. Gregory Jaczko, it seems, was a temperamental leader, so difficult to work with that the NRC’s mission had been compromised.

Beyond the unremarked upon humor inherent in seeing Republican Senators and Representatives suddenly so concerned with nuclear safety, Jaczko himself provided under-reported frame-relief by proving so difficult to work with that he was able to secure the NRC’s unanimous approval of the new Westinghouse AP1000 reactor (despite some very serious concerns about that design and no financial support for construction without billions in federal loan guarantees). And the rest of the commission was able to out-vote Jaczko, four to one, to fast-track the construction and licensing of the new reactors, slated for plants in Georgia and South Carolina.

But perhaps most remarkable is that despite the industry push-back and power-politics, Jaczko still seems to think and act as if nuclear power can be regulated to a safe and prosperous future. The viciousness of the industry attacks and the seriousness of the events of nuclear’s annus horribilis should really disabuse him of that notion.

And the horrible year is not yet over. The last two weeks have seen the first of the debris from the Japanese tsunami hitting US shores, Pacific seals being tested after showing up in Alaska with skin lesions and other symptoms consistent with radiation poisoning, and a report from the International Journal of Health Services linking some 14,000 excess deaths in the US to the fallout from the Fukushima reactors.

Then there is the Japanese interim report on their nuclear disaster describing a regulatory agency unable and unwilling to take control of the crisis. There is the Tokyo Electric Power Company (TEPCO) contention that they are not legally responsible for fallout once it lands on someone else’s property. And here in the United States, there was a valve leak at Mass Pilgrim, a condenser leak at New York’s Fitzpatrick plant, and an event at Vermont Yankee where both of the cooling system’s backup power generators were offline at the same time.

Still, the nuclear industry pushes the notion of an impending nuclear renaissance. It wasn’t true before Fukushima, and it certainly isn’t true after, but with even their supposed nemesis on the NRC helping them build new reactors and relicense old ones, why not keep working the system?

As noted here (but few other places), the December hearing before the Senate Environment and Public Works Committee that was so dominated by the Jaczko cause célèbre was originally scheduled months earlier to track the progress of recommendations from the Fukushima taskforce. An August admonition from Sen. Barbara Boxer (D-CA) seemed to move the commissioners to put some of the recommendations on what passes for a fast track at the NRC, but even that has now been reversed by a majority of commissioners who voted themselves the ability to reject the very rules they previously ordered up. But all the attention in oversight hearings has been focused on Jaczko and his management style–learning the lessons of Fukushima and how that might improve US nuclear safety has been less than a footnote.

So, though Jaczko continues in his job with the public support of the White House, the nation’s regulatory agenda has already been altered. The nuclear industry may not yet have their head, but they’ve demonstrated they own the body.

And now a new year is upon us. The flip of the calendar will not wrap up the Fukushima disaster any more than it will end the parade of lesser events at American nuclear facilities. The nuclear industry will not decide to embrace safety upgrades and stricter regulation any more than the financial community will embrace nuclear power as a good risk. And no matter how many moves Gregory Jaczko makes in the direction of Bill Magwood or his industry masters, neither will ever like him. . . or consider calling off their well-practiced campaign to oust him.

Happy New Year.