Book Salon – Joseph Mangano, Author of Mad Science: The Nuclear Power Experiment

[Note: On Saturday afternoon, I hosted FDL Book Salon, featuring a live Q&A with Joseph Mangano, author of Mad Science: The Nuclear Power Experiment. This is a repost of that discussion.]

In December of 1962, Consolidated Edison, New York City’s main purveyor of electricity, announced that it had submitted an official proposal to the US Atomic Energy Commission (the AEC, the precursor to today’s Nuclear Regulatory Commission) for the construction of a nuclear power plant on a site called Ravenswood. . . in Queens. . . on the East River. . . directly across from the United Nations. . . within five miles of roughly five million people.

Ravenswood became the site of America’s first demonstrations against nuclear power. It inspired petitions to President John F. Kennedy and NYC Mayor Robert Wagner, and the possibility of a nuclear reactor in such a densely populated area even invited public skepticism from the pro-nuclear head of the AEC, David Lilienthal. Finally, after a year of pressure, led by the borough’s community leaders, Con Edison withdrew their application.

But within three years, reports suggested Con Ed had plans to build a nuclear plant under Central Park. After that idea was roundly criticized, the utility publicly proposed a reactor complex under Welfare Island (now known as Roosevelt Island), instead.

Despite the strong support of Laurence Rockefeller, the brother of New York State’s governor, the Welfare Island project disappeared from Con Ed’s plans by 1970. . . soon to be replaced by the idea of a nuclear “jetport”–artificial islands to be built in the ocean just south of New York City that would host a pair of commercial reactors.

Does that sound like madness? Well, from today’s perspective–with Three Mile Island, Chernobyl, and now Fukushima universally understood as synonyms for disaster–it probably does. But there was a time before those meltdowns when nuclear power still had a bit of a glow, when, despite (or because of) the devastation from the atomic bombs dropped on Japan, many believed that the atom’s awesome power could be harnessed for good; a time when dangerous and deadly mishaps at a number of the nation’s earlier reactors were easily excused or kept completely secret.

In Mad Science: The Nuclear Power Experiment, Joseph Mangano returns to that time, and then methodically pulls back the curtain on the real history of nuclear folly and failure, and the energy source that continues to masquerade as clean, safe, and “too cheap to meter.”

From Chalk River, in Canada, the world’s first reactor meltdown, through Idaho’s EBR-1, Waltz Mill, PA, Santa Susana’s failed Sodium Reactor Experiment, the Idaho National Lab explosion that killed three, Fermi-1, which almost irradiated Detroit, and, of course, Three Mile Island, Mad Science provides a chilling catalog of nuclear accidents, all of which were disasters in their own right, and all of which illustrate a troubling pattern of safety breeches followed by secrecy and lies.

Nuclear power’s precarious existence is not, of course, just a story for the history books, and Mangano also details the state of America’s 104 remaining reactors. So many of today’s plants have problems, too, but perhaps the maddest thing about the mad science of civilian atomic power is that science often plays a minor role in decisions about the technology’s future.

From its earliest days, this supposedly super-cheap energy was financially unsustainable. By the mid-1950s, private insurers had turned their back on nuclear facilities, fearing the massive payouts that would follow any accident. The nuclear industry turned to the US government, and in 1957, the Price-Anderson Act limited a plant’s liability to an artificially low but apparently insurable figure–any damage beyond that would be covered by US taxpayers. Shippingport, America’s first large-scale commercial nuclear reactor, was built entirely with government money, and that is hardly an isolated story. Even before the Three Mile Island meltdown, Wall Street had walked away from nuclear energy, meaning that no new reactors could be built without massive federal loan guarantees.

Indeed, the cost of construction, when piled on top of the cost of fueling, skilled labor, operation and upkeep, made the prospect of opening a new nuclear plant financially unpalatable. So, as Mangano explains, nuclear utilities turned to another strategy for making their vertical profitable, one familiar to any student of late Western capitalism. Rather than build, energy companies would instead buy. Since the 1990s, the nuclear sector has seen massive consolidation. Mergers and acquisitions have created nuclear mega-corporations, like Exelon, Duke, and Entergy, which run multiple reactors across many facilities in many states. And the supposed regulators of the industry, the NRC, has encouraged this behavior by rubberstamping dozens upon dozens of 20-year license extensions, turning reactors that were supposed to be nearing the end of their functional lives into valuable assets.

But the pain of nuclear power isn’t only measured in meltdowns and money. Whether firing on all cylinders (as it were) or falling apart, nuclear plants have proven to be dangerous to the populations they are supposed to serve. Joseph Mangano, an epidemiologist by trade, and director of the Radiation and Public Health Project (RPHP), has made a career out of trying to understand the immediate and long-term effects of nuclear madness, be it from fallout, leaks, or the “permissible levels” of radioactive isotopes that are regularly released from reactors as part of normal operation.

As I mentioned earlier this week, Mangano and the RPHP are the inheritors of the Baby Tooth Survey, the groundbreaking examination of strontium levels in children born before, during and after the age of atmospheric nuclear bomb tests. The discovery of high levels of Sr-90, a radioactive byproduct of uranium fission, in the baby teeth of children born in the 1950s and ’60s led directly to the Partial Test Ban Treaty in 1963.

Mangano’s work has built on the original survey, linking elevated Sr-90 levels to cancer, and examining the increases in strontium in the bodies of children that lived close to nuclear power plants. And all of this is explained in great detail in Mad Science.

The author has also applied his expertise to the fallout from the ongoing Fukushima disaster. Last December, Mangano and Janette Sherman published a peer-reviewed article in the International Journal of Health Sciences (PDF) stating that in the 14 weeks following the start of the Japanese nuclear crisis, an estimated 14,000 excess deaths in the United States could be linked to radioactive fallout from Fukushima Daiichi. (RPHP has since revised that estimate–upward–to almost 22,000 deaths (PDF).)

That last study is not specifically detailed in Mad Science, but I hope we can touch on it today–along with some of the many equally maddening “experiments” in nuclear energy production that Mangano carefully unwraps in his book.

[Click here to read my two-hour chat with Joe Mangano.]

Looking Back at Our Nuclear Future

nuclear reactor, rocketdyne, LAT

The Los Angeles Times heralds the nuclear age in January 1957. (photo via wikipedia)

On March 11, communities around the world commemorated the first year of the still-evolving Fukushima Daiichi nuclear disaster with rallies, marches, moments of silence, and numerous retrospective reports and essays (including one here). But 17 days later, another anniversary passed with much less fanfare.

It was in the early morning hours of March 28, 1979, that a chain of events at the Three Mile Island nuclear power plant in Dauphin County, Pennsylvania caused what is known as a “loss of coolant accident,” resulting in a partial core meltdown, a likely hydrogen explosion, the venting of some amount of radioisotopes into the air and the dumping of 40,000 gallons of radioactive waste water into the Susquehanna River. TMI (as it is sometimes abbreviated) is often called America’s worst commercial nuclear accident, and though the nuclear industry and its acolytes have worked long and hard to downplay any adverse health effects stemming from the mishap, the fact is that what happened in Pennsylvania 33 years ago changed the face and future of nuclear power.

The construction of new nuclear power facilities in the US was already in decline by the mid 1970s, but the Three Mile Island disaster essentially brought all new projects to a halt. There were no construction licenses granted to new nuclear plants from the time of TMI until February of this year, when the NRC gave a hasty go-ahead to two reactors slated for the Vogtle facility in Georgia. And though health and safety concerns certainly played a part in this informal moratorium, cost had at least an equal role. The construction of new plants proved more and more expensive, never coming in on time or on budget, and the cleanup of the damaged unit at Three Mile Island took 14 years and cost over $1 billion. Even with the Price-Anderson Act limiting the industry’s liability, nuclear power plants are considered such bad risks that no financing can be secured without federal loan guarantees.

In spite of that–or because of that–the nuclear industry has pushed steadily over the last three decades to wring every penny out of America’s aging reactors, pumping goodly amounts of their hefty profits into lobbying efforts and campaign contributions designed to capture regulators and elected officials and propagate the age-old myth of an energy source that is clean, safe, and, if not exactly “too cheap to meter,” at least impressively competitive with other options. The result is a fleet of over 100 reactors nearing the end of their design lives–many with documented dangers and potential pitfalls that could rival TMI–now seeking and regularly getting license extensions from the Nuclear Regulatory Commission while that same agency softens and delays requirements for safety upgrades.

And all of that cozy cooperation between government and big business goes on with the nuclear industry pushing the idea of a “nuclear renaissance.” In the wake of Fukushima, the industry has in fact increased its efforts, lobbying the US and British governments to downplay the disaster, and working with its mouthpieces in Congress and on the NRC to try to kill recommended new regulations and force out the slightly more safety-conscious NRC chair. And, just this month, the Nuclear Energy Institute, the chief nuclear trade group, moved to take their message to what might be considered a less friendly cohort, launching a splashy PR campaign by underwriting public radio broadcasts and buying time for a fun and funky 60-second animated ad on The Daily Show.

All of this is done with the kind of confidence that only comes from knowing you have the money to move political practice and, perhaps, public opinion. Three Mile Island is, to the industry, the exception that proves the rule–if not an out-and-out success. “No one died,” you will hear–environmental contamination and the latest surveys now showing increased rates of Leukemia some 30 years later be damned–and that TMI is the only major accident in over half a century of domestic nuclear power generation.

Of course, this is not even remotely true–names like Browns Ferry, Cooper, Millstone, Indian Point and Vermont Yankee come to mind–but even if you discount plant fires and tritium leaks, Three Mile Island is not even America’s only meltdown.

There is, of course, the 1966 accident at Michigan’s Enrico Fermi Nuclear Generating Station, chronicled in the John Grant Fuller book We Almost Lost Detroit, but atom-lovers will dismiss this because Fermi 1 was an experimental breeder reactor, so it is not technically a “commercial” nuclear accident.

But go back in time another seven years–a full 20 before TMI–and the annals of nuclear power contain the troubling tale of another criticality accident, one that coincidentally is again in the news this week, almost 53 years later.

The Sodium Reactor Experiment

On July 12, 1957, the Sodium Reactor Experiment (SRE) at the Santa Susana Nuclear Field Laboratory near Simi Valley, California, became the first US nuclear reactor to produce electricity for a commercial power grid. SRE was a sodium-cooled reactor designed by Atomics International, a division of North American Aviation, a company more often known by the name of its other subsidiary, Rocketdyne. Southern California Edison used the electricity generated by SRE to light the nearby town of Moorpark.

Sometime during July 1959–the exact date is still not entirely clear–a lubricant used to cool the seals on the pump system seeped into the primary coolant, broke down in the heat and formed a compound that clogged cooling channels. Because of either curiosity or ignorance, operators continued to run the SRE despite wide fluctuations in core temperature and generating capacity.

Following a pattern that is now all too familiar, increased temperatures caused increased pressure, necessitating what was even then called a “controlled venting” of radioactive vapor. How much radioactivity was released into the environment is cause for some debate, for, in 1959, there was less monitoring and even less transparency. Current reconstructions, however, believe the release was possibly as high as 450 times greater than what was vented at Three Mile Island.

When the reactor was finally shut down and the fuel rods were removed (which was a trick in itself, as some were stuck and others broke), it was found that over a quarter showed signs of melting.

The SRE was eventually repaired and restarted in 1960, running on and off for another four years. Decommissioning began in 1976, and was finished in 1981, but the story doesn’t end there. Not even close.

Fifty-three years after a partial nuclear meltdown at the Santa Susana Field Laboratory site in the Chatsworth Hills, the U.S. Environmental Protection Agency has just released data finding extensive radioactive contamination still remains at the accident site.

“This confirms what we were worried about,” said Assemblywoman Julia Brownley, D-Oak Park, a long-time leader in the fight for a complete and thorough cleanup of this former Rocketdyne rocket engine testing laboratory. “This begins to answer critical questions about what’s still up there, where, how much, and how bad?”

Well, it sort of begins to answer it.

New soil samples weigh in at up to 1,000 times the radiation trigger levels (RTLs) agreed to when the Department of Energy struck a cleanup deal with the California Department of Toxic Substances in 2010. What’s more, these measurements follow two previous cleanup efforts by the DOE and Boeing, the company that now owns Santa Susana.

In light of the new findings, Assemblywoman Brownley has called on the DOE to comply with the agreement and do a real and thorough cleanup of the site. That means taking radiation levels down to what are the established natural background readings for the area. But that, as is noted by local reporter Michael Collins, “may be easier said than done”:

This latest U.S. EPA information appears to redefine what cleaning up to background actually is. Publicly available documents show that the levels of radiation in this part of Area IV where the SRE once stood are actually many thousands of times more contaminated than previously thought.

Just as troubling, the EPA’s RTLs, which are supposed to mirror the extensively tested and reported-on backgrounds of the numerous radionuclides at the site, were many times over the background threshold values (BTVs). So instead of cleaning up to background, much more radiation would be left in the ground, saving the government and lab owner Boeing millions in cleanup.

It is a disturbing tale of what Collins calls a kind of environmental “bait and switch” (of which he provides even more detail in an earlier report), but after a year of documenting the mis- and malfeasance of the nuclear industry and its supposed regulators, it is, to us here, anyway, not a surprising one.

To the atom-enamored, it is as if facts have a half-life all their own. The pattern of swearing that an event is no big deal, only to come back with revision after revision, each admitting a little bit more in a seemingly never-ending regression to what might approximately describe a terrible reality. It would be reminiscent of the “mom’s on the roof” joke if anyone actually believed that nuclear operators and their chummy government minders ever intended to eventually relay the truth.

Fukushima’s latest surprise

Indeed, that unsettling pattern is again visible in the latest news from Japan. This week saw revelations that radiation inside Fukushima Daiichi’s reactor 2 containment vessel clocked in at levels seriously higher than previously thought, while water levels are seriously lower.

An endoscopic camera, thermometer, water gauge and dosimeter were inserted into the number 2 reactor containment, and it documented radiation levels of up to 70 sieverts per hour, which is not only seven times the previous highest measurement, but 10 times higher than what is called a fatal dose (7 Sv/hr would kill a human in minutes).

The water level inside the containment vessel, estimated to be at 10 meters when the Japanese government declared a “cold shutdown” in December, turns out to be no more than 60 centimeters (about two feet).

This is disquieting news for many reasons. First, the high radiation not only makes it impossible for humans to get near the reactor, it makes current robotic technology impractical, as well. The camera, for instance, would only last 14 hours in those conditions. If the molten core is to be removed, a new class of radiation-resistant robots will have to be developed.

The extremely low water levels signal more troubling scenarios. Though some experts believe that the fuel rods have melted down or melted through to such an extent that two feet of water can keep them covered, it likely indicates a breach or breaches of the containment vessel. Plant workers, after all, have been pumping water into the reactor constantly for months now (why no one noticed that they kept having to add water to the system, or why no one cared, is plenty disturbing, as is the question of where all that extra water has gone).

Arnie Gundersen of nuclear engineering consultancy Fairewinds Associates believes that the level of water roughly corresponds with the lower lip of the vessel’s suppression pool–further evidence that reactor 2 suffered a hydrogen explosion, as did two other units at Fukushima. Gundersen also believes that the combination of heat, radioactivity and seawater likely degraded the seals on points where tubes and wires penetrated the structure–so even if there were no additional cracks from an explosion or the earthquake, the system is now almost certainly riddled with holes.

The holes pose a couple of problems, not only does it mean more contaminated water leaking into the environment, it precludes filling the building with water to shield people and equipment from radiation. Combined with the elevated radiation readings, this will most certainly mean a considerably longer and more expensive cleanup.

And reactor 2 was considered the Fukushima unit in the best shape.

(Reactor 2 is also the unit that experienced a rapid rise in temperature and possible re-criticality in early February. TEPCO officials later attributed this finding to a faulty thermometer, but if one were skeptical of that explanation before, the new information about high radiation and low water levels should warrant a re-examination of February’s events.)

What does this all mean? Well, for Japan, it means injecting another $22 billion into Fukushima’s nominal owners, TEPCO–$12 billion just to stay solvent, and $10.2 billion to cover compensation for those injured or displaced by the nuclear crisis. That cash dump comes on top of the $18 billion already coughed up by the Japanese government, and is just a small down payment on what is estimated to be a $137 billion bailout of the power company.

It also means a further erosion of trust in an industry and a government already short on respect.

The same holds true in the US, where poor communication and misinformation left the residents of central Pennsylvania panicked and perturbed some 33 years ago, and the story is duplicated on varying scales almost weekly somewhere near one of America’s 104 aging and increasingly accident-prone nuclear reactors.

And, increasingly, residents and the state and local governments that represent them are saying “enough.” Whether it is the citizens and state officials from California’s Simi Valley demanding the real cleanup of a 53-year-old meltdown, or the people and legislature of Vermont facing off with the federal government on who has ultimate authority to assure that the next nuclear accident doesn’t happen in their backyard, Americans are looking at their future in the context of nuclear’s troubled past.

One year after Fukushima, 33 years after Three Mile Island, and 53 years after the Sodium Reactor Experiment, isn’t it time the US federal government did so, too?