Book Salon – Joseph Mangano, Author of Mad Science: The Nuclear Power Experiment

[Note: On Saturday afternoon, I hosted FDL Book Salon, featuring a live Q&A with Joseph Mangano, author of Mad Science: The Nuclear Power Experiment. This is a repost of that discussion.]

In December of 1962, Consolidated Edison, New York City’s main purveyor of electricity, announced that it had submitted an official proposal to the US Atomic Energy Commission (the AEC, the precursor to today’s Nuclear Regulatory Commission) for the construction of a nuclear power plant on a site called Ravenswood. . . in Queens. . . on the East River. . . directly across from the United Nations. . . within five miles of roughly five million people.

Ravenswood became the site of America’s first demonstrations against nuclear power. It inspired petitions to President John F. Kennedy and NYC Mayor Robert Wagner, and the possibility of a nuclear reactor in such a densely populated area even invited public skepticism from the pro-nuclear head of the AEC, David Lilienthal. Finally, after a year of pressure, led by the borough’s community leaders, Con Edison withdrew their application.

But within three years, reports suggested Con Ed had plans to build a nuclear plant under Central Park. After that idea was roundly criticized, the utility publicly proposed a reactor complex under Welfare Island (now known as Roosevelt Island), instead.

Despite the strong support of Laurence Rockefeller, the brother of New York State’s governor, the Welfare Island project disappeared from Con Ed’s plans by 1970. . . soon to be replaced by the idea of a nuclear “jetport”–artificial islands to be built in the ocean just south of New York City that would host a pair of commercial reactors.

Does that sound like madness? Well, from today’s perspective–with Three Mile Island, Chernobyl, and now Fukushima universally understood as synonyms for disaster–it probably does. But there was a time before those meltdowns when nuclear power still had a bit of a glow, when, despite (or because of) the devastation from the atomic bombs dropped on Japan, many believed that the atom’s awesome power could be harnessed for good; a time when dangerous and deadly mishaps at a number of the nation’s earlier reactors were easily excused or kept completely secret.

In Mad Science: The Nuclear Power Experiment, Joseph Mangano returns to that time, and then methodically pulls back the curtain on the real history of nuclear folly and failure, and the energy source that continues to masquerade as clean, safe, and “too cheap to meter.”

From Chalk River, in Canada, the world’s first reactor meltdown, through Idaho’s EBR-1, Waltz Mill, PA, Santa Susana’s failed Sodium Reactor Experiment, the Idaho National Lab explosion that killed three, Fermi-1, which almost irradiated Detroit, and, of course, Three Mile Island, Mad Science provides a chilling catalog of nuclear accidents, all of which were disasters in their own right, and all of which illustrate a troubling pattern of safety breeches followed by secrecy and lies.

Nuclear power’s precarious existence is not, of course, just a story for the history books, and Mangano also details the state of America’s 104 remaining reactors. So many of today’s plants have problems, too, but perhaps the maddest thing about the mad science of civilian atomic power is that science often plays a minor role in decisions about the technology’s future.

From its earliest days, this supposedly super-cheap energy was financially unsustainable. By the mid-1950s, private insurers had turned their back on nuclear facilities, fearing the massive payouts that would follow any accident. The nuclear industry turned to the US government, and in 1957, the Price-Anderson Act limited a plant’s liability to an artificially low but apparently insurable figure–any damage beyond that would be covered by US taxpayers. Shippingport, America’s first large-scale commercial nuclear reactor, was built entirely with government money, and that is hardly an isolated story. Even before the Three Mile Island meltdown, Wall Street had walked away from nuclear energy, meaning that no new reactors could be built without massive federal loan guarantees.

Indeed, the cost of construction, when piled on top of the cost of fueling, skilled labor, operation and upkeep, made the prospect of opening a new nuclear plant financially unpalatable. So, as Mangano explains, nuclear utilities turned to another strategy for making their vertical profitable, one familiar to any student of late Western capitalism. Rather than build, energy companies would instead buy. Since the 1990s, the nuclear sector has seen massive consolidation. Mergers and acquisitions have created nuclear mega-corporations, like Exelon, Duke, and Entergy, which run multiple reactors across many facilities in many states. And the supposed regulators of the industry, the NRC, has encouraged this behavior by rubberstamping dozens upon dozens of 20-year license extensions, turning reactors that were supposed to be nearing the end of their functional lives into valuable assets.

But the pain of nuclear power isn’t only measured in meltdowns and money. Whether firing on all cylinders (as it were) or falling apart, nuclear plants have proven to be dangerous to the populations they are supposed to serve. Joseph Mangano, an epidemiologist by trade, and director of the Radiation and Public Health Project (RPHP), has made a career out of trying to understand the immediate and long-term effects of nuclear madness, be it from fallout, leaks, or the “permissible levels” of radioactive isotopes that are regularly released from reactors as part of normal operation.

As I mentioned earlier this week, Mangano and the RPHP are the inheritors of the Baby Tooth Survey, the groundbreaking examination of strontium levels in children born before, during and after the age of atmospheric nuclear bomb tests. The discovery of high levels of Sr-90, a radioactive byproduct of uranium fission, in the baby teeth of children born in the 1950s and ’60s led directly to the Partial Test Ban Treaty in 1963.

Mangano’s work has built on the original survey, linking elevated Sr-90 levels to cancer, and examining the increases in strontium in the bodies of children that lived close to nuclear power plants. And all of this is explained in great detail in Mad Science.

The author has also applied his expertise to the fallout from the ongoing Fukushima disaster. Last December, Mangano and Janette Sherman published a peer-reviewed article in the International Journal of Health Sciences (PDF) stating that in the 14 weeks following the start of the Japanese nuclear crisis, an estimated 14,000 excess deaths in the United States could be linked to radioactive fallout from Fukushima Daiichi. (RPHP has since revised that estimate–upward–to almost 22,000 deaths (PDF).)

That last study is not specifically detailed in Mad Science, but I hope we can touch on it today–along with some of the many equally maddening “experiments” in nuclear energy production that Mangano carefully unwraps in his book.

[Click here to read my two-hour chat with Joe Mangano.]

End-of-Summer News Puts Nuclear Renaissance on Permanent Vacation

Calvert Cliffs Nuclear Power Plant, Units 1 & 2, near Lusby Maryland. (photo: NRCgov)

The Nuclear Regulatory Commission cannot issue a license for the construction and operation of a new nuclear reactor in Maryland–that is the ruling of the NRC’s Atomic Safety and Licensing Board (ASLB) handed down Thursday.

In their decision, the ASLB agreed with intervenors that the Calvert Cliffs 3 reactor project planned for the shores of Chesapeake Bay violated the Atomic Energy Act’s prohibition against “foreign ownership, control, or domination.” UniStar, the parent company for the proposal, is wholly owned by French energy giant Électricité de France (EDF).

EDF had originally partnered with Constellation Energy, the operator of two existing Calvert Cliffs reactors, but Constellation pulled out of the project in 2010. At the time, Constellation balked at government requirements that Constellation put $880 million down on a federal loan guarantee of $7.6 billion (about 12 percent). Constellation wanted to risk no more than one or two percent of their own capital, terms the feds were then willing to meet if Constellation and EDF could guarantee the plant’s completion. Constellation also found that requirement too onerous.

Constellation has since been purchased by Exelon.

The ASLB decision technically gives EDF 60 days to find a new American partner, but given the history and the current state of the energy market, new suitors seem highly unlikely. It marks only the second time a license has been denied by the ASLB. (The first, for the Byron, Illinois plant in 1984 was overturned on appeal. Byron opened the next year, and Illinois’s groundwater has never been the same.) The NRC also declined to grant a license to the South Texas Project late last year when US-based NRG Energy (corporate ID courtesy of the Department of Redundancy Department) pulled out of the project, leaving Japanese-owned Toshiba as the only stakeholder.

The Calvert Cliffs intervenors were led by the Nuclear Information and Resource Service (NIRS), which has been fighting Calvert Cliffs 3 almost since its inception. NIRS was joined by Beyond Nuclear, Public Citizen and Southern Maryland CARES.

Michael Mariotte, Executive director of NIRS, called Thursday’s decision “a blow to the so-called ‘nuclear renaissance,'” noting that back in 2007, when permit requests were submitted for Calvert Cliffs 3, the project was considered the “flagship” of a coming fleet of new reactors. “Now,” said Mariotte, “it is a symbol for the deservedly failed revival of nuclear power in the US.”

A symbol, yes, but far from the only symbol.

Earlier in the week, Exelon notified the Nuclear Regulatory Commission that it would withdraw its application for an “early site permit” for a proposed nuclear facility near Victoria, Texas. A combined construction and operating license was originally sought for two reactors back in 2008, but by 2010, with demand down and nuclear costs continuing to skyrocket, Exelon backed off that request, essentially downgrading it to “just keeping a toe in the water” status.

Now, with the price of a new nuke plant climbing higher still–even though the economy remains sluggish–and with natural gas prices continuing to fall, that toe has been toweled dry. “Today’s withdrawal brings an end to all project activity,” said an Exelon statement issued Tuesday.

And on Monday, the operators of the troubled San Onofre Nuclear Generating Station let it be known that they would start removing the radioactive fuel from Unit 3 sometime in September. Unit 3 has been offline since it scrammed after a heat exchange tube leaked radioactive steam at the end of January. Later inspection revealed that numerous tubes on the unit, as well as on its previously shut-down twin, showed alarming and dangerous amounts of wear.

Removing the fuel rods all-but-confirms what most experts already knew: SONGS 3 will never come back online. Southern California Edison, the plant’s majority operator, might not want to admit that, but earlier in August, SCE announced plans for 730 layoffs, roughly a third of the plant’s workforce. That size of reduction makes repairing, testing and restarting both San Onofre reactors unfeasible. Or, to look at it through the other end of the telescope, as David Lochbaum, director of the Union of Concerned Scientists put it, “reducing the scope of required work at the jobsite is a good thing to do before discharging workers.”

Mothballing Unit 3 will reduce the workload, but with the entire facility offline for most of this year, SONGS is already an economic sinkhole. Strangely, despite failing to generate a single kilowatt of energy in eight months, SCE and co-owner San Diego Gas & Electric have continued to collect $54 million of revenue every month from California ratepayers.

The California Public Utilities Commission has to investigate rate cuts when a plant fails to deliver for nine months (so, officially, November and December, for the two SONGS reactors), but that process would start sooner if it were determined that a reactor would never come back into service. Neither San Onofre reactor will restart before the end of the year, and it is now clearer than a San Diego summer sky that the number 3 reactor never will. Scientists know this, engineers know this, utilities commissioners know this, and even Southern California Edison knows this–but SCE won’t say it because that would hasten the start of rate rollbacks.

Calvert Cliffs being in the news this time of year also calls to mind how well nuclear plants do in hurricanes. . . as in, not very well at all. Last year, as Hurricane Irene marched up the Atlantic coast, the two existing reactors at Calvert Cliffs had to scram when a dislodged piece of siding caused a short in the main transformer and an “unanticipated explosion within the Protected Area resulting in visible damage to permanent structures or equipment.”

As fate would have it, this year’s “I” storm, Isaac, necessitated the shutdown of Entergy’s Waterford plant, outside of New Orleans. In fact, many plants are required to shutdown when facing winds in excess of 74 mph, “rendering them,” as Beyond Nuclear put it, “a liability, rather than an asset during a natural disaster.”

And Hurricane Isaac was but one possible symptom of a warming climate that has proven problematic for nuclear plants this summer. Braidwood, Illinois and Millstone in Connecticut had to curtail output or temporarily shutdown this summer because the source water used for cooling the reactors rose above prescribed limits. With summer temperatures expected to climb even more in coming years–and with droughts also anticipated–incidents like these (and like those at Hope Creek, New Jersey, and Limerick, Pennsylvania, in 2010) will become more frequent, leaving nuclear power less able to deliver electricity during the months when it is most in demand.

Of course, the summer of 2012 has also had its share of what might be called “classic” nuclear plant problems–power supply failures, radioactive leaks, and other so-called “unusual incidents.” One of the most recent, yet another accident at Palisades in Michigan:

On Sunday [August 12], Palisades shut down due to a leak of radioactive and acidic primary coolant, escaping from safety-critical control rod drive mechanisms attached to its degraded lid, atop its “worst embrittled reactor pressure vessel in the U.S.”

And all of the above has happened during a summer when the NRC finally acknowledged (or, more accurately, when a federal court ordered the NRC to acknowledge) that it could no longer pretend the US had a solution for its nuclear waste storage crisis. The commission has stopped issuing new operating licenses, license extensions and construction licenses until it can craft a plan for dealing with the mountains of spent nuclear fuel continuing to accumulate at nuclear facilities across the country.

So, there is no nuclear renaissance. There wasn’t one before this summer–there wasn’t even one before everyone came to know about the Fukushima disaster. The dangers and costs that have followed nuclear power since its inception have firmly branded it as a technology of the past. The events of 2011 and 2012 have provided more evidence that nuclear power is done as a meaningful energy proposition. The sooner America can also be done with the myth of a possible, sometime, “who knows when,” “maybe next year” nuclear renaissance, the sooner the federal government can stop propping up the unsafe and unviable nuclear industry. And the sooner the US can begin a real technological and economic rebirth.

Emergency Evacuation, Drill Requirements Quietly Cut While Nuclear Regulators Consider Doubling Length of License Extensions

Map showing the evacuation zone around Indian Point Energy Center by the NRDC (via Riverkeeper).

The Nuclear Regulatory Commission will hold a public meeting tonight (Thursday, May 17) on the safety and future of the Indian Point Energy Center (IPEC), a nuclear power plant located in Buchanan, NY, less than 40 miles north of New York City. The Tarrytown, NY “open house” (as it is billed) is designed to explain and answer questions about the annual assessment of safety at IPEC delivered by the NRC in March, but will also serve as a forum where the community can express its concerns in advance of the regulator’s formal relicensing hearings for Indian Point, expected to start later this year.

And if you are in the area–even as far downwind as New York City–you can attend (more on this at the end of the post).

Why might you want to come between Entergy, the current owner of Indian Point, and a shiny new 20-year license extension? As the poets say, let me count the ways:

Indian Point has experienced a series of accidents and “unusual events” since its start that have often placed it on a list of the nation’s worst nuclear power plants. Its structure came into question within months of opening; it has flooded with 100,000 gallons of Hudson River water; it has belched hundreds of thousands of gallons of radioactive steam in the last 12 years; its spent fuel pools have leaked radioactive tritium, strontium 90 and nickel 63 into the Hudson and into groundwater; and IPEC has had a string of transformer fires and explosions, affecting safety systems and spilling massive amounts of oil into the Hudson.

That poor, poor Hudson River. Indian Point sits on its banks because it needs the water for cooling, but beyond the radioactive leaks and the oil, the water intake system likely kills nearly a billion aquatic organisms a year. And the overheated exhaust water is taking its toll on the river, as well.

Indian Point is located in a seismically precarious place, right on top of the intersection of the Stamford-Peekskill and Ramapo fault lines. The NRC’s 2010 seismic review places IPEC at the top of the list of reactors most at risk for earthquake damage.

Entergy was also late in providing the full allotment of new warning sirens within the 10-mile evacuation zone, which is a kind of “insult to injury” shortfall, since both nuclear power activists and advocates agree that Indian Point’s evacuation plan, even within the laughably limited “Plume Exposure Pathway Emergency Planning Zone,” is more fantasy than reality.

With this kind of legacy, and all of these ongoing problems, it would seem, especially in a world informed by the continuing Fukushima disaster, that the NRC’s discretionary right to refuse a new operating license for Indian Point would be the better part of valor. But the NRC rarely bathes itself in such glory.

Instead, when the nuclear industry meets rules with which it cannot comply, the answer has usually been for the regulatory agencies to just change the rules.

Such was the case the night before the-night-before-Christmas, when the NRC and the Federal Emergency Management Agency quietly changed long-standing emergency planning requirements:

Without fanfare, the nation’s nuclear power regulators have overhauled community emergency planning for the first time in more than three decades, requiring fewer exercises for major accidents and recommending that fewer people be evacuated right away.

Nuclear watchdogs voiced surprise and dismay over the quietly adopted revamp — the first since the program began after Three Mile Island in 1979. Several said they were unaware of the changes until now, though they took effect in December.

At least four years in the works, the changes appear to clash with more recent lessons of last year’s reactor crisis in Japan. A mandate that local responders always run practice exercises for a radiation release has been eliminated — a move viewed as downright bizarre by some emergency planners.

The scope of the changes is rivaled only by the secrecy in which they were implemented. There were no news releases regarding the overhaul from either FEMA or the NRC in December or January. Industry watchdogs, such as the Nuclear Information and Resource Service, only learned about the new rules when questioned by the Associated Press.

It was the AP that published an in-depth investigation of lax nuclear regulation last June, and it was the AP that spotted this latest gift to the nuclear industry:

The latest changes, especially relaxed exercise plans for 50-mile emergency zones, are being flayed by some local planners and activists who say the widespread contamination in Japan from last year’s Fukushima nuclear accident screams out for stronger planning in the United States, not weaker rules.

FEMA officials say the revised standards introduce more variability into planning exercises and will help keep responders on their toes. The nuclear power industry has praised the changes on similar grounds.

Onsite security forces at nuclear power plants have practiced defending against make-believe assaults since 1991 and increased the frequency of these drills after the 2001 terrorist attacks. The new exercises for community responders took years to consider and adopt with prolonged industry and government consultations that led to repeated drafts. The NRC made many changes requested by the industry in copious comments.

Naturally.

But, if a nearby resident or a city official were to express concerns about a nuclear plant’s emergency preparedness–like, say, those that live and work around Indian Point–regulators would likely dismiss them as alarmist:

None of the revisions has been questioned more than the new requirement that some planning exercises incorporate a reassuring premise: that little or no harmful radiation is released. Federal regulators say that conducting a wider variety of accident scenarios makes the exercises less predictable.

However, many state and local emergency officials say such exercises make no sense in a program designed to protect the population from radiation released by a nuclear accident.

“We have the real business of protecting public health to do if we’re not needed at an exercise,” Texas radiation-monitoring specialist Robert Free wrote bluntly to federal regulators when they broached the idea. “Not to mention the waste of public monies.”

Environmental and anti-nuclear activists also scoffed. “You need to be practicing for a worst case, rather than a nonevent,” said nuclear policy analyst Jim Riccio of the group Greenpeace.

From the perspective of the industry-captured regulators, if you can’t handle the truth, rewrite the truth. And if there were any doubt about the motives of the nuclear industry, itself, when it comes to these new rules, a reading of the AP report makes it clear: from top to bottom, the revisions require less of nuclear operators.

While officials stress the importance of limiting radioactive releases, the revisions also favor limiting initial evacuations, even in a severe accident. Under the previous standard, people within two miles would be immediately evacuated, along with everyone five miles downwind. Now, in a large quick release of radioactivity, emergency personnel would concentrate first on evacuating people only within two miles. Others would be told to stay put and wait for a possible evacuation order later.

This rule change feels ludicrous in the wake of Fukushima, where a 12-mile radius is assumed to be a no-go zone for a generation, and the State Department advised US citizens to evacuate beyond 50 miles, but it is especially chilling in the context of Indian Point. The stated reasoning behind the tiny evacuation zone is that anything broader would be impossible to execute quickly, so better to have folks just “hunker down.”

“They’re saying, ‘If there’s no way to evacuate, then we won’t,'” Phillip Musegaas, a lawyer with the environmental group Riverkeeper, said of the stronger emphasis on taking shelter at home. The group is challenging relicensing of Indian Point.

Over 17 million people live within 50 miles of IPEC. In February, environmental and anti-nuclear groups asked the NRC to expand evacuation planning to 25 miles from the current 10, and to push readiness zones out to 100 miles, up from 50. They also asked for emergency planners to take into account multiple disasters, like those experienced last year in Japan.

That might have been an opportune time for the regulators to explain that they had already changed the rules–two months earlier–and that they had not made them stronger, they had made them weaker. Not only will the 10 and 50-mile zones remain as they are, the drills for the 50-mile emergency will be required only once every eight years–up from the current six-year cycle.

With the turnover in elected officials and municipal employees being what it is–especially in times of constricting local budgets–even a run-through every six years seems inadequate. An eight-year lag is criminal. (Perhaps the NRC can revise assumptions so that disasters only happen within a year or two of a readiness drill.)

But an extra two years between drills is cheaper. So is the concentration of the evacuation zone in case of quick radiation release. So are many of the other changes. At a time when regulators should look at Japan and ask “What more can we do?” they instead are falling over themselves to do less.

And the nuclear industry needs all the help it can get.

The fact is that without this kind of help–without the weakened rules and limp enforcement, without the accelerated construction and licensing arrangements, without the federal loan guarantees and liability caps, and without the cooperation and expenditures of state and local governments–nuclear could not exist. Indeed, it would not exist, because without this wellspring of corporate welfare, nuclear power plants would never turn a profit for their owners.

In fact, with the cost of new plant construction escalating by the minute (the new AP1000 reactors approved for Georgia’s Plant Vogtle this February are already $900 million over budget), the strategy of energy giants like Entergy rests more on buying up old reactors and spending the bare minimum to keep them running while they apply for license extensions. This is the game plan for Indian Point. It is also Entergy’s plan for Vermont Yankee, a plant granted a license extension by the NRC in March, over the objections of the state government.

The case of Vermont Yankee is currently before a federal appeals court–and New York has filed an amicus brief on Vermont’s behalf, since New York Governor Andrew Cuomo would like to see Indian Point shuttered at the end of its current license, and it knows the NRC has never met a license extension it didn’t like.

Meanwhile, however, Entergy continues to hemorrhage money. The second largest nuclear power provider in the nation posted a first quarter loss of $151.7 million–its stock is down 13% this year–directly as a result of its creaky, inefficient, often offline nuclear reactors. It needs quick, cheap, easy relicensing for facilities like Indian Point if it is ever going to turn things around.

Although maybe not even then. Take, for example, the current plight of California’s San Onofre Nuclear Generating Station (SONGS). San Onofre’s two reactors have been offline since the end of January, when a radiation leak led to the discovery of accelerated wear in over 1,300 copper tubes used to move radioactive water to and from the plant’s recently replaced steam generators:

[Southern California] Edison finished installation of the $671-million steam generators less than two years ago, promising customers they would create major energy savings. Now, officials estimate it will cost as much as $65 million to fix the problems and tens of millions more to replace the lost power.

Both those figures are likely low. No one has yet isolated the exact cause of the wear, though attention focuses on excessive vibration (and that vibration will likely be linked to faulty design and the attempt to retrofit off-the-shelf parts on the cheap), and the time it will take to correct the problem, make repairs and get the reactors up to something close to full power is somewhere between unpredictable and never.

Indeed, Edison is instead talking about running SONGS at reduced capacity, at least for several months. Plant engineers say they believe running the reactors at lower power will minimize vibration (though critics point out this will not resolve the problems with already badly worn tubing), but the reality is much simpler. Every kilowatt the nuclear plant can manage to generate is one kilowatt that Edison won’t have to buy from someone else. There is some warranty coverage for the new generators, but there is none for the replacement costs of the electricity.

Edison will, of course, ask the California Public Utility Commission if it can pass replacement costs on to consumers, but that, in turn, begs another question. When the PUC approved the cost of replacing the steam generators, they did so with the assumption that SONGS would average 88% capacity until its license expires in 2022.

An analysis at the time showed that a one-year outage or a scenario in which the plant would run at lower capacity for an extended period could make the project a money loser. But the PUC found those scenarios to be unlikely and determined that the project would probably be a good deal for ratepayers.

“If the plant runs at 50 to 80 percent capacity for the rest of its life, the entire cost-effectiveness analysis is turned on its head,” said Matthew Freedman, attorney for advocacy group The Utility Reform Network.

Sound familiar?

Regulators, be they at the federal NRC or a state’s PUC, can re-imagine reality all they want, but reality turns out to be stubborn. . . and, it seems, costly.

And don’t think that the industry hasn’t already cottoned to this.

In the midst of a battle over extending the 40-year licenses of two Entergy Corp. nuclear plants near New York City, federal regulators are looking into whether such plants would be eligible for yet another extension.

That would mean the Indian Point plants and others around the county might still be running after reaching 60 years of age.

Bill Dean, a regional administrator for the Nuclear Regulatory Commission, said Wednesday the agency “is currently looking at research that might be needed to determine whether there could be extensions even beyond” the current 60-year limit for licenses.

Yes, the article attributes the initiative to federal regulators, but it strains credulity to believe they came up with this idea on their own. The industry can do the money math–hell, it’s pretty much the only thing they do–extending a license for 40 years beyond design life has got to be more profitable than extending a license for only 20 years.

And let’s be clear about that. The design life of Generation II reactors–the BWRs and PWRs that make up the US nuclear power fleet–is 30 to 40 years. When the plans were drawn up for Indian Point, Vermont Yankee, San Onofre, or any of the other 98 reactors still more-or-less functioning around the country, the assumption was that they would be decommissioned after about four decades. Current relicensing gives these aged reactors another 20 years, but it now turns out that this is only an interim move, designed to buy time to rewrite the regulations and give reactors a full second life. Eighty years in total.

It is yet another example of how rules are shaped–and ignored–to protect the bottom line of the nuclear industry, and not the safety of US citizens. (Or, for that matter, the pocketbooks of US consumers.)

And so, it is yet another example of why the Nuclear Regulatory Commission cannot be allowed to continue its rubberstamp relicensing.

And this is where you come in: As mentioned at the top, the NRC’s Bill Dean (the same guy looking into doubling the license extensions) will be in Tarrytown, NY, along with other government and Entergy representatives to answer questions and listen to testimony about the past, present, and future of Indian Point.

The open house is from 6 to 8 PM, and the public meeting is from 7 to 9 PM at the DoubleTree Hotel Tarrytown, 255 South Broadway, Tarrytown, NY.

Riverkeeper, in coordination with Clearwater, NYPIRG, Citizens’ Awareness Network, Occupy Wall Street Environmental Working Group, IPSEC, Shut Down Indian Point Now, and others will be holding a press conference before the open house, at 5:30 PM.

If you live in New York City, Riverkeeper is sponsoring busses to Tarrytown. Busses leave at 3:45 PM sharp from Grand Central (busses will be waiting at 45th St. and Vanderbilt Ave.). More info from SDIPN here. Reserve a place on a bus through Riverkeeper here.

Nuclear “Renaissance” Meets Economic Reality, But Who Gets the Bill?

Crystal River Nuclear Generating Plant, Unit 3, 80 miles north of Tampa, FL. (photo: U.S. NRC)

Crystal River is back in the news. Regular readers will recall when last we visited Progress Energy Florida’s (PEF) troubled nuclear reactor it was, shall we say, hooked on crack:

The Crystal River story is long and sordid. The containment building cracked first during its construction in 1976. That crack was in the dome, and was linked to a lack of steel reinforcement. Most nuclear plants use four layers of steel reinforcement; Crystal River used only one. The walls were built as shoddily as the dome.

The latest problems started when Crystal River needed to replace the steam generator inside the containment building. Rather than use an engineering firm like Bechtel or SGT–the companies that had done the previous 34 such replacements in the US–Progress decided it would save a few bucks and do the job itself.

Over the objections of on-site workers, Progress used a different method than the industry standard to cut into the containment building. . . and that’s when this new cracking began. It appears that every attempt since to repair the cracks has only led to new “delamination” (as the industry calls it).

Sara Barczak of CleanEnergy Footprints provides more detail on the last couple of years:

The Crystal River reactor has been plagued with problems ever since PEF self-managed a steam generation replacement project in September 2009. The replacement project was intended to last 3 months, until PEF informed the Commission that it had cracked the containment structure during the detensioning phase of the project. PEF subsequently announced that the CR3 reactor would be repaired and back in service by the 3rd quarter of 2010…then by the 4th quarter of 2010…and then by the first quarter of 2011. On March 15, 2011 PEF informed the Commission that it had cracked the reactor again during the retensioning process and subsequently told the Commission that it estimated repair costs of $1.3 billion and a return to service in 2014. Shortly thereafter, the Humpty Dumpty Crystal River reactor suffered yet another crack on July 26, 2011.

That July crack was later revealed to be 12-feet long and 4-feet wide–and here, at least when it came to notifying the Nuclear Regulatory Commission, “later” means much later. . . like four months later.

The issue, of course–as anyone with a lifetime crack habit will tell you–is that this all gets very expensive. Not only is there the cost of the repairs. . . and the repairs to the repairs. . . and the repairs to the repairs to the repairs. . . there is the cost of replacing the energy that was supposed to be supplied to PEF customers by the crippled reactor.

And then there is the cost of the new reactors. . . .

Wait, what?

Yes, based on the amazing success they have had managing Crystal River–and something called a “determination of need,” which was granted in 2008–Progress Energy holds out hope of someday building two of those trendy new AP1000 nuclear reactors at another Florida site, this one in Levy County.

And who is expected to pick up the tab? Who is on the hook, not just for repairs and replacement energy at Crystal River, but for PEF keeping its options open at Levy? Well, not surprisingly in “privatize profits, socialize risk” America, the plan was to stick Florida ratepayers with the bill (again Footprints provides the numbers):

Customer bills for instance, were expected to increase by $16/mo. in 2016; $26/mo. in 2017 and a whopping $49/mo. in 2020. Initially, Progress expected the proposed reactors to cost $4-6 billion each, coming online beginning in 2016. Just a few years later, the estimated costs have skyrocketed to over $22 billion and the online date, if the reactors ever even come online, has bumped back to 2021 and 2022. And the Office of Public Counsel believes that PEF may not intend to complete the reactors until 2027, if at all. The company has spent over $1 billion dollars on the Levy nuclear reactors and has yet to commit to build them. And the company is entitled to recover all its preconstruction and carrying costs from its customers before even a kilowatt of electricity is produced. In fact, even if the project is never completed PEF can recover all its construction costs from customers courtesy of the 2006 anti-consumer “early cost recovery” state law…essentially a nuclear tax scheme.

But now, as of this week, there is a new plan. . . stick Florida ratepayers with the bill:

The state Public Service Commission on Wednesday unanimously approved an agreement that will increase the power bills of Progress Energy Florida customers — who already pay among the highest rates in the state.

It is supposed to be a win for consumers.

The deal includes a $288 million “refund” of money customers were to pay to replace power from the crippled Crystal River nuclear plant, which has been offline since fall 2009 and might never return to service.

PSC staff concluded that customer rates still would increase. The average Progress customer’s bill on Jan. 1 is expected to increase $4.93 a month per 1,000 kilowatt hours of usage, from $123.19 to $128.12, subject to adjustments for fuel costs.

That’s a “win” for Floridians, it seems, because they are paying out something less for Progress Energy’s mistakes–at least in the near term. But even that caveat is subject to scrutiny:

While the agreement provides a replacement power cost refund over 3 years of $288 million to PEF customers (due to the CR3 outage) – it comes packaged with a base rate increase of $150 million and it precludes the parties from challenging up to $1.9 billion (yes, billion) fuel and replacement power costs from 2009 to 2016.

And that’s not all. Also in the agreement is a requirement that PEF start (yes, that is start) the latest repairs on Crystal River by the end of 2012; if they do not, Progress has to “refund” an additional $100 million to consumers. Missing, however, from the agreement is any new estimate (given the latest revelations, not to mention any post-Fukushima upgrades required) of the cost should PEF actually try to remedy all of Crystal River’s problems–and perhaps even more glaring, questions remain as to who will pay (and how much it will cost) should PEF decide to stop throwing good money after bad and decommission Crystal River reactor 3.

Also missing from the calculation is any determination of what PEF’s insurance will cover–Crystal River’s insurer stopped paying out in early 2011, and they have yet to decide if they will pay anything more. . . at all.

The agreement also fails to put an end to what is now becoming a regular part of the nuclear power finance scam–collecting public money for plants that will never be built. As the Southern Alliance for Clean Energy (SACE, which is affiliated with CleanEnergy Footprints) observed when it opted not to sign on to the Florida rate agreement:

PEF hasn’t committed to actually building the Levy Co. reactors. Having customers pay for the company just to maintain the “option” at a later date to build reactors is unfair to today’s customers – and runs counter to the Commission’s “intent to build” standard. The agreement allows the company to collect another $350 million from customers, presumably for pursuing their Nuclear Regulatory Commission license (without any prudency review) for reactors it hasn’t committed to build? In fact, the agreement contemplates that the company will cancel its engineering and procurement contracts as well, further demonstrating the unlikelihood of project completion.

If something sounds familiar here, it should. Southern Company has been using heaping helpings of Georgia ratepayer money to do all kinds of preliminary work on their Vogtle site, purportedly the future home of two new AP1000 reactors, just granted a combined construction and operating license by the NRC in January.

The big difference so far between Levy and Vogtle has been Southern’s ability to line up some financing for its Georgia construction–thanks to $8.33 billion in federal loan guarantees granted the project by the Obama administration almost two years in advance of the NRC approval.

PEF does not have this kind of guarantee, but that did not stop them from trading on the possibility:

Progress Energy Florida officials said Thursday that President Obama’s plan to offer federal loan guarantees to encourage investment in nuclear power plant construction will be a strong incentive to move forward with the company’s proposed Levy County plant.

The project, however, is facing delays of between 20 to 36 months due to economic and regulatory problems, making the plant’s future uncertain despite the company’s insistence the project isn’t cancelled.

“It (the loan guarantee program) will definitely play a role in that decision (whether to continue with the project). It is one of many, but a very important one,” said Progress Energy spokesman Mike Hughes.

That was in 2010, right after President Obama announced the new Department of Energy loan program–but two years later, PEF has not secured a federal guarantee, and so has not secured any financing. . . and thus has also not committed to ever building the Levy plant. But none of that has stopped Progress from collecting money from Florida consumers just to keep hope alive, as it were. And none of that has apparently stopped any of Florida’s public service commissioners from telling PEF that this practice is just jake with them.

Even with NRC approval and some federally guaranteed money, it is still not a sure bet that the Vogtle AP1000 reactors will ever come on line. PEF’s Levy project has no license and no loan guarantee.

The folks at Progress Energy are not stupid–at least not when it comes to short-term financial gain–they know how very slim their chances are of ever pushing even a single kilowatt out of Levy County, but they also know where the profit is in the nuclear power game. It is not, quite obviously, in the construction of nuclear power plants–rife as that process is with lengthy delays and massive cost overruns–and it is not, some might be surprised to learn, so much in electric generation, given that plants in the US are now suffering “unusual events” that force one or more of them offline pretty much every week. Unusual events cost money–in parts and labor, and in time lost to repairs and inspections–and, as has been demonstrated at Crystal River, there is the cost of replacement energy.

No, the real profits in the nuclear racket come from the ability to collect on services not rendered and a product not delivered, or at least not delivered regularly. Because the system backstops the financing of nuclear facilities while also allowing plant operators to pass both real and anticipated costs onto ratepayers, many American taxpayers are poised to pay twice for nuclear power plants that don’t produce power.

And it would be remiss to close without adding a few more points.

Much has been made of the failure of solar panel manufacturer Solyndra, which also received aid from the federal government in the form of loan guarantees. Solyndra ultimately got $527 million from the government; contrast that with what has been granted to Southern for Vogtle. Or, starker still, look at the entire alternative energy loan program, now projected to cost out at under $3 billion, and then look back to 2010, when Barack Obama pledged $54.5 billion to the DOE loan guarantee program designed to foster investment in nuclear power.

In addition, while the government will actually recoup most of the money lost on Solyndra when the factory and inventory are auctioned off, the “leftovers” from a failed nuclear plant–even the parts that are not contaminated with radioactivity–are much harder (if not impossible) to move.

The focus of this story has been on the costs–because the case of Progress Energy Florida is such a glaring example of how nuclear operators fleece America–but the fact that a company so focused on the bottom line, regardless of its effect on public safety, is still allowed to play with something as dangerous as a damaged nuclear power plant should not be overlooked. Alas, as was exposed last year, nuclear regulators and the nuclear industry seem to agree that safety should be addressed with an eye toward cost. So, while Crystal River is a scary mess, the reactor in question is actually offline right now. The same cannot be said, for example, about Ohio’s Davis-Besse plant, which has cracking problems of its own, but was allowed by the NRC to restart in January–over the vociferous objections of industry watchdogs, engineers, and Rep. Dennis Kucinich (D-OH).

And then there is Palisades, on the shores of Lake Michigan, where numerous events and releases of radioactivity in the last year caused the Nuclear Regulatory Commission to issue a downgrade of the plant’s safety rating–but the NRC did not order the plant to shut down. Palisades is owned by Entergy Nuclear, who was recently cited for “buying reactors cheap, then running them into the ground.” In addition to Palisades, Entergy owns nine other plants–Arkansas Nuclear One, Nebraska’s Cooper Nuclear Station, Fitzpatrick in upstate New York, Grand Gulf in Mississippi, Indian Point, just north of New York City, Pilgrim, outside of Boston, River Bend and Waterford, both in Louisiana, and Vermont Yankee.

The case of Vermont Yankee is especially upsetting. Yankee is a GE boiling water reactor, similar to the model that failed so catastrophically at Fukushima–but the NRC voted to extend its operating license just days after the Tohoku quake. The state of Vermont had a better idea, declaring that the nuclear plant should shut down by March 21, 2012. However, in January, federal district court judge J. Garvan Murtha ruled Entergy could ignore Vermont’s order and continue operating. The state is appealing the ruling, but in the meantime, Yankee continues to operate. . . and continues to leak tritium into the groundwater, and into the Connecticut River.

It is not clear who will be paying for any attempt to clean up the Vermont Yankee leak–though one can guess–nor is it clear what will happen to new nuclear waste produced after March 21, since the Vermont statehouse has forbidden any new waste storage on the site. Indeed, storing used nuclear fuel is a nationwide problem that poses real dangers in the near term, and will likely cost billions of public dollars in the long term.

And that’s the bottom line–the real bottom line–for the industry’s oft-ballyhooed “nuclear renaissance.” Plant operators and captured regulators can try to obscure the safety concerns with diversionary dustups and magical thinking, but economic realities, like facts, are stubborn. Without huge injections of public money, nuclear power simply cannot continue to function–and the public is in no mood for another multi-billion dollar government bailout.