Yule Fuel

Yes, it’s time for that metaphor again. If you grew up near a TV during the 1960s or ’70s, you probably remember the ever-burning Yule Log that took the place of programming for a large portion of Christmas Day. The fire burned, it seemed, perpetually, never appearing to consume the log, never dimming, and never, as best the kid who stared at the television could tell, ever repeating.

Now, if you have been watching this space about as intently as I once stared at that video hearth, perhaps you are thinking that this eternal flame is about to reveal itself as a stand-in for nuclear power. You know, the theoretically bottomless, seemingly self-sustaining, present yet distant, ethereal energy source that’s clean, safe and too cheap to meter. Behold: a source of warmth and light that lasts forever!

Yeah. . . you wish! Or, at least you’d wish if you were a part of the nuclear industry or one of its purchased proxies.

But wishing does not make it so. A quick look at the US commercial reactor fleet proves there is nothing perpetual or predictable about this supposedly dependable power source.

Both reactors at San Onofre have been offline for almost a year, after a radioactive leak revealed dangerously worn heat transfer tubes. Nebraska’s Fort Calhoun plant has been shutdown since April of 2011, initially because of flooding from the Missouri River, but now because of a long list of safety issues. And it has been 39 months since Florida’s Crystal River reactor has generated even a single kilowatt, thanks to a disastrously botched repair to its containment that has still not been put right.

October’s Hurricane Sandy triggered scrams at two eastern nuclear plants, and induced an alert at New Jersey’s Oyster Creek reactor because flooding threatened spent fuel storage. Other damage discovered at Oyster Creek after the storm, kept the facility offline for five weeks more.

Another plant that scrammed during Sandy, New York’s Nine Mile Point, is offline again (for the third, or is it the fourth time since the superstorm?), this time because of a containment leak. (Yes, a containment leak!)

Other plants that have seen substantial, unplanned interruptions in power generation this year include Indian Point, Davis-Besse, Diablo Canyon, Hope Creek, Calvert Cliffs, Byron, St. Lucie, Pilgrim, Millstone, Susquehanna, Prairie Island, Palisades. . . honestly, the list can–and does–go on and on. . . and on. Atom-heads love to excuse the mammoth capital investments and decades-long lead times needed to get nuclear power plants online by saying, “yeah, but once up, they are like, 24/7/365. . . dude!”

Except, of course, as 2012–or any other year–proves, they are very, very far from anything like that. . . dude.

So, no, that forever-flame on the YuleTube is not a good metaphor for nuclear power. It is, however, a pretty good reminder of the still going, still growing problem of nuclear waste.

December saw the 70th anniversary of the first self-sustaining nuclear chain reaction, and the 30th anniversary of the first Nuclear Waste Policy Act. If the 40-year difference in those anniversaries strikes you as a bit long, well, you don’t know the half of it. (In the coming weeks, I hope to say more about this.) At present, the United States nuclear power establishment is straining to cope with a mountain of high-level radioactive waste now exceeding 70,000 tons. And with each year, the country will add approximately 2,000 more tons to the pile.

And all of this waste, sitting in spent fuel pools and above-ground dry casks– supposedly temporary storage–at nuclear facilities across the US, will remain extremely toxic for generations. . . for thousands and thousands of generations.

There is still no viable plan to dispose of any of this waste, but the nation’s creaky reactor fleet continues to make it. And with each refueling, another load is shoehorned into overcrowded onsite storage, increasing the problem, and increasing the danger of spent fuel accidents, including, believe it or not, a type of fire that cannot be extinguished with water.

So, if you want to stare at a burning log and think about something, think about how that log is not so unlike a nuclear fuel assembly exposed to air for a day or two. . . or think of how, even if it is not actually burning, the high levels of radiation tossed out from those uranium “logs” will create heat and headaches for hundreds of thousands of yuletides to come.

Oh, and, if you are still staring at the Yule log on a cathode ray tube television, don’t sit too close. . . because, you know, radiation.

Merry Christmas.

Book Salon – Joseph Mangano, Author of Mad Science: The Nuclear Power Experiment

[Note: On Saturday afternoon, I hosted FDL Book Salon, featuring a live Q&A with Joseph Mangano, author of Mad Science: The Nuclear Power Experiment. This is a repost of that discussion.]

In December of 1962, Consolidated Edison, New York City’s main purveyor of electricity, announced that it had submitted an official proposal to the US Atomic Energy Commission (the AEC, the precursor to today’s Nuclear Regulatory Commission) for the construction of a nuclear power plant on a site called Ravenswood. . . in Queens. . . on the East River. . . directly across from the United Nations. . . within five miles of roughly five million people.

Ravenswood became the site of America’s first demonstrations against nuclear power. It inspired petitions to President John F. Kennedy and NYC Mayor Robert Wagner, and the possibility of a nuclear reactor in such a densely populated area even invited public skepticism from the pro-nuclear head of the AEC, David Lilienthal. Finally, after a year of pressure, led by the borough’s community leaders, Con Edison withdrew their application.

But within three years, reports suggested Con Ed had plans to build a nuclear plant under Central Park. After that idea was roundly criticized, the utility publicly proposed a reactor complex under Welfare Island (now known as Roosevelt Island), instead.

Despite the strong support of Laurence Rockefeller, the brother of New York State’s governor, the Welfare Island project disappeared from Con Ed’s plans by 1970. . . soon to be replaced by the idea of a nuclear “jetport”–artificial islands to be built in the ocean just south of New York City that would host a pair of commercial reactors.

Does that sound like madness? Well, from today’s perspective–with Three Mile Island, Chernobyl, and now Fukushima universally understood as synonyms for disaster–it probably does. But there was a time before those meltdowns when nuclear power still had a bit of a glow, when, despite (or because of) the devastation from the atomic bombs dropped on Japan, many believed that the atom’s awesome power could be harnessed for good; a time when dangerous and deadly mishaps at a number of the nation’s earlier reactors were easily excused or kept completely secret.

In Mad Science: The Nuclear Power Experiment, Joseph Mangano returns to that time, and then methodically pulls back the curtain on the real history of nuclear folly and failure, and the energy source that continues to masquerade as clean, safe, and “too cheap to meter.”

From Chalk River, in Canada, the world’s first reactor meltdown, through Idaho’s EBR-1, Waltz Mill, PA, Santa Susana’s failed Sodium Reactor Experiment, the Idaho National Lab explosion that killed three, Fermi-1, which almost irradiated Detroit, and, of course, Three Mile Island, Mad Science provides a chilling catalog of nuclear accidents, all of which were disasters in their own right, and all of which illustrate a troubling pattern of safety breeches followed by secrecy and lies.

Nuclear power’s precarious existence is not, of course, just a story for the history books, and Mangano also details the state of America’s 104 remaining reactors. So many of today’s plants have problems, too, but perhaps the maddest thing about the mad science of civilian atomic power is that science often plays a minor role in decisions about the technology’s future.

From its earliest days, this supposedly super-cheap energy was financially unsustainable. By the mid-1950s, private insurers had turned their back on nuclear facilities, fearing the massive payouts that would follow any accident. The nuclear industry turned to the US government, and in 1957, the Price-Anderson Act limited a plant’s liability to an artificially low but apparently insurable figure–any damage beyond that would be covered by US taxpayers. Shippingport, America’s first large-scale commercial nuclear reactor, was built entirely with government money, and that is hardly an isolated story. Even before the Three Mile Island meltdown, Wall Street had walked away from nuclear energy, meaning that no new reactors could be built without massive federal loan guarantees.

Indeed, the cost of construction, when piled on top of the cost of fueling, skilled labor, operation and upkeep, made the prospect of opening a new nuclear plant financially unpalatable. So, as Mangano explains, nuclear utilities turned to another strategy for making their vertical profitable, one familiar to any student of late Western capitalism. Rather than build, energy companies would instead buy. Since the 1990s, the nuclear sector has seen massive consolidation. Mergers and acquisitions have created nuclear mega-corporations, like Exelon, Duke, and Entergy, which run multiple reactors across many facilities in many states. And the supposed regulators of the industry, the NRC, has encouraged this behavior by rubberstamping dozens upon dozens of 20-year license extensions, turning reactors that were supposed to be nearing the end of their functional lives into valuable assets.

But the pain of nuclear power isn’t only measured in meltdowns and money. Whether firing on all cylinders (as it were) or falling apart, nuclear plants have proven to be dangerous to the populations they are supposed to serve. Joseph Mangano, an epidemiologist by trade, and director of the Radiation and Public Health Project (RPHP), has made a career out of trying to understand the immediate and long-term effects of nuclear madness, be it from fallout, leaks, or the “permissible levels” of radioactive isotopes that are regularly released from reactors as part of normal operation.

As I mentioned earlier this week, Mangano and the RPHP are the inheritors of the Baby Tooth Survey, the groundbreaking examination of strontium levels in children born before, during and after the age of atmospheric nuclear bomb tests. The discovery of high levels of Sr-90, a radioactive byproduct of uranium fission, in the baby teeth of children born in the 1950s and ’60s led directly to the Partial Test Ban Treaty in 1963.

Mangano’s work has built on the original survey, linking elevated Sr-90 levels to cancer, and examining the increases in strontium in the bodies of children that lived close to nuclear power plants. And all of this is explained in great detail in Mad Science.

The author has also applied his expertise to the fallout from the ongoing Fukushima disaster. Last December, Mangano and Janette Sherman published a peer-reviewed article in the International Journal of Health Sciences (PDF) stating that in the 14 weeks following the start of the Japanese nuclear crisis, an estimated 14,000 excess deaths in the United States could be linked to radioactive fallout from Fukushima Daiichi. (RPHP has since revised that estimate–upward–to almost 22,000 deaths (PDF).)

That last study is not specifically detailed in Mad Science, but I hope we can touch on it today–along with some of the many equally maddening “experiments” in nuclear energy production that Mangano carefully unwraps in his book.

[Click here to read my two-hour chat with Joe Mangano.]

New Fukushima Video Shows Disorganized Response, Organized Deception

A frame from early in the newly released Fukushima video.

Tokyo Electric Power Company (TEPCO), the operator of the Fukushima Daiichi nuclear power plant when the Tohoku earthquake and tsunami struck last year, bowed to public and government pressure this week, releasing 150 hours of video recorded during the first days of the Fukushima crisis. Even with some faces obscured and two-thirds of the audio missing, the tapes clearly show a nuclear infrastructure wholly unprepared for the disaster, and an industry and government wholly determined to downplay that disaster’s severity:

Though incomplete, the footage from a concrete bunker at the plant confirms what many had long suspected: that the Tokyo Electric Power Company, the plant’s operator, knew from the early hours of the crisis that multiple meltdowns were likely despite its repeated attempts in the weeks that followed to deny such a probability.

It also suggests that the government, during one of the bleakest moments, ordered the company not to share information with the public, or even local officials trying to decide if more people should evacuate.

Above all, the videos depict mayhem at the plant, a lack of preparedness so profound that too few buses were on hand to carry workers away in the event of an evacuation. They also paint a close-up portrait of the man at the center of the crisis, Mr. Yoshida, who galvanizes his team of engineers as they defy explosions and fires — and sometimes battle their own superiors.

That summary is from New York Times Tokyo-based reporter Hiroko Tabuchi. The story she tells is compelling and terrifying, and focuses on the apparent heroism of Masao Yoshida, Fukushima’s chief manager when the crisis began, along with the far less estimable behavior of TEPCO and Japanese government officials. It is worth a couple of your monthly quota of clicks to read all the way through.

The story is but one take on the video, and I point this out not because I question Tabuchi’s reporting on its content, much of which is consistent with what is already known about the unholy alliance between the nuclear industry and the Japanese government, and about what those parties did to serve their own interests at the expense of the Japanese people (and many others across the northern hemisphere). Instead, I bring this up because I do not myself speak Japanese, and I am only allowed to view a 90-minute “highlight reel” and not the entire 150 hours of video, and so I am dependent on other reporters’ interpretations. And because neither TEPCO nor the Japanese government (which now essentially owns TEPCO) has yet proven to be completely open or honest on matters nuclear, the subtle differences in those interpretations matter.

Tabuchi took to Twitter to say how much she wanted to tell the story as “a tribute to Fukushima Daiichi chief Yoshida and the brave men on the ground who tried to save us.” But in a separate tweet, Tabuchi said she was “heartbroken” to discover her article was cut in half.

Editing is, of course, part of journalism. Trimming happens to many stories in many papers. But I had to raise an eyebrow when I saw a note at the bottom of Tabuchi’s piece that said Matthew Wald “contributed reporting from Washington.” I have previously been critical of Wald–a Times veteran, contributor to their Green blog, and often their go-to reporter on nuclear power–for stories that sometimes read like brochures from the Nuclear Energy Institute. Wald tends to perpetuate myths in line with the old “clean, safe, and too cheap to meter” saw, while reserving a much, uh, healthier (?) skepticism for nuclear power critics and renewable energy advocates.

There is, of course, no way to know what Wald’s contributions (or redactions) were in this case, and it is doubtful any of the parties involved would tell us, but what particularly stokes my curiosity is this paragraph:

Despite the close-up view of the disaster, the videos — which also capture teleconferences with executives in Tokyo — leave many questions unresolved, in good part because only 50 of 150 hours include audio. The company blamed technical problems for the lack of audio.

TEPCO might blame technical problems, but reports from other news services seem to leave little doubt that the general belief is that the audio has been withheld–or in some cases most obviously obscured–by TEPCO. The BBC’s Mariko Oi saw it this way:

Tepco has bowed to pressure to release 150 hours of teleconferencing footage but the tape was heavily edited and mostly muted to “protect employees’ privacy”.

. . . .

Tepco is again under criticism for not releasing the full recordings and has been asked if it was removing more than employees’ names and phone numbers.

And Mari Yamaguchi of the Associated Press reported even more directly about TEPCO’s intent:

Japan’s former prime minister criticized the tsunami-hit nuclear plant’s operator Wednesday for heavily editing the limited video coverage it released of the disaster, including a portion in which his emotional speech to utility executives and workers was silenced.

Naoto Kan called for Tokyo Electric Power Co. to release all of its video coverage, beyond the first five days. Two-thirds of the 150 hours of videos it released Monday are without sound, including one segment showing Kan’s visit to the utility’s headquarters on March 15 last year, four days after a tsunami critically damaged three reactors at the Fukushima Dai-ichi power plant.

Many people’s faces, except for the plant chief and top executives in Tokyo, are obscured in the videos and frequent beeps mask voices and other sound.

The AP story also points out that the released video arbitrarily ends at midnight on March 15–and though it is not known how much more tape exists, it appears clear that TEPCO has held some substantial portion back. After five days, the Fukushima crisis was far from over, after all (as it is still far from over), and the recordings end amidst some of the disaster’s most critical events.

But the New York Times omits all of this, leaving TEPCO’s Rose Mary Woods-like excuse to stand as the innocent truth.

That’s a shame, because the way you read this story changes when you look at some of the horrific revelations keeping in mind that this is only the part TEPCO decided it could let you see. Here are just a few highlights. . . or lowlights:

  • Plant managers and TEPCO officials were aware from the earliest hours of the crisis that they were likely facing multiple meltdowns.
  • Japanese government officials withheld information–and ordered TEPCO to withhold information–on radiation levels that could have helped untold numbers of civilians reduce their exposure.
  • Despite warnings years prior that such natural disasters were possible in the region, Fukushima operators had no plan to deal with the damage and loss of power caused by the quake and tsunami.
  • TEPCO did not even have the infrastructure or procedures in place to evacuate its own employees from an imperiled facility.
  • Plant officials were–from the earliest days–as worried about the spent fuel pools as they were about the reactors. Those on the scene feared that most of the pools at Daiichi, not just the one at reactor four, were facing loss of coolant and the fires and massive radiation leaks that would follow, though publicly they said none of the pools were a danger at the time.

And there is more about the dire conditions for plant workers, the lack of food or water, the high levels of radiation exposure, and even a point where employees had to pool their cash to buy water and gasoline. And, as noted above, that’s just the part TEPCO has deemed acceptable for release.

Above all, though–beyond the discrepancies in reporting, beyond the moral failings of TEPCO and government officials, beyond the heroism of those at the crippled facility–what the new Fukushima tapes reveal is what those who watch the nuclear industry have mostly known all along. Nuclear power is dangerous–the radiation, the complexity of the system, the waste, the reliance on everything going right, and the corrupt conspiracy between industry and government saddle this form of energy production with unacceptable risks. The video now available might shed some light on how things at Fukushima went horribly wrong, but the entire world already knows plenty of who, what, where and when. We all know that things at Fukushima did go horribly wrong, and so many know that they must suffer because of it.

For Nuclear Power This Summer, It’s Too Darn Hot


You know that expression, “Hotter than July?” Well, this July, July was hotter than July. Depending on what part of the country you live in, it was upwards of three degrees hotter this July than the 20th Century average. Chicago, Denver, Detroit, Indianapolis and St. Louis are each “on a pace to shatter their all-time monthly heat records.” And “when the thermometer goes way up and the weather is sizzling hot,” as the Cole Porter song goes, demand for electricity goes way up, too.

During this peak period, wouldn’t it be great to know that you can depend on the expensive infrastructure your government and, frankly, you as ratepayers and taxpayers have been backstopping all these years? Yeah, that would be great. . . so would an energy source that was truly clean, safe, and too cheap to meter. Alas, to the surprise of no one (at least no one who watches this space), nuclear power, the origin of that catchy if not quite Porter-esque tripartite promise, cannot.

Take, for example, Braidwood, the nuclear facility that supplies much of Chicago with electricity:

It was so hot last week, a twin-unit nuclear plant in northeastern Illinois had to get special permission to continue operating after the temperature of the water in its cooling pond rose to 102 degrees.

It was the second such request from the plant, Braidwood, which opened 26 years ago. When it was new, the plant had permission to run as long as the temperature of its cooling water pond, a 2,500-acre lake in a former strip mine, remained below 98 degrees; in 2000 it got permission to raise the limit to 100 degrees.

The problem, said Craig Nesbit, a spokesman for Exelon, which owns the plant, is not only the hot days, but the hot nights. In normal weather, the water in the lake heats up during the day but cools down at night; lately, nighttime temperatures have been in the 90s, so the water does not cool.

But simply getting permission to suck in hotter water does not make the problem go away. When any thermoelectric plant (that includes nuclear, coal and some gas) has to use water warmer than design parameters, the cooling is less effective, and that loss of cooling potential means that plants need to dial down their output to keep from overheating and damaging core components. Exelon said it needed special dispensation to keep Braidwood running because of the increased demand for electricity during heat waves such as the one seen this July, but missing from the statement is that the very design of Braidwood means that it will run less efficiently and supply less power during hot weather.

Also missing from Exelon’s rationale is that they failed to meet one of the basic criteria for their exception:

At the Union of Concerned Scientists, a group that is generally critical of nuclear power safety, David Lochbaum, a nuclear engineer, said the commission was supposed to grant exemptions from its rules if there was no increase or only a minor increase in risk, and if the situation could not have been foreseen.

The safety argument “is likely solid and justified,’’ he wrote in an e-mail, but “it is tough to argue (rationally) that warming water conditions are unforeseen.’’ That is a predictable consequence of global warming, he said.

Quite. Lochbaum cites two instances from the hot summer of 2010–New Jersey’s Hope Creek nuclear station and Limerick in Pennsylvania each had to reduce output due to intake water that was too warm. In fact, cooling water problems at US thermoelectric generators were widespread along the Mississippi River during the hot, dry summer of 1988.

And the problem is clearly growing. Two months ago, a study published in Nature Climate Change predicted continued warming and spreading drought conditions will significantly reduce thermoelectric output in coming decades:

Higher water temperatures and reduced river flows in Europe and the United States in recent years have resulted in reduced production, or temporary shutdown, of several thermoelectric power plants, resulting in increased electricity prices and raising concerns about future energy security in a changing climate.

. . . .

[The Nature Climate Change study] projects further disruption to supply, with a likely decrease in thermoelectric power generating capacity of between 6-19% in Europe and 4-16% in the United States for the period 2031-2060, due to lack of cooling-water. The likelihood of extreme (>90%) reductions in thermoelectric power generation will, on average, increase by a factor of three.

Compared to other water use sectors (e.g. industry, agriculture, domestic use), the thermoelectric power sector is one of the largest water users in the US (at 40%) and in Europe (43% of total surface water withdrawals). While much of this water is ‘recycled’ the power plants rely on consistent volumes of water, at a particular temperature, to prevent overheating of power plants. Reduced water availability and higher water temperatures – caused by increasing ambient air temperatures associated with climate change – are therefore significant issues for electricity supply.

That study is of course considering all thermoelectric sources, not just nuclear, but the decrease in efficiency applies across the board. And, when it comes to nuclear power, as global temperatures continue to rise and water levels in rivers and lakes continue to drop, an even more disconcerting threat emerges.

When a coal plant is forced to shut down because of a lack of cool intake water, it can, in short order, basically get turned off. With no coal burning, the cooling needs of the facility quickly downgrade to zero.

A nuclear reactor, however, is never really “off.”

When a boiling water reactor or pressurized water reactor (BWR and PWR respectively, the two types that make up the total of the US commercial reactor fleet) is “shutdown” (be it in an orderly fashion or an abrupt “scram”), control rods are inserted amongst the fuel rods inside the reactor. The control rods absorb free neutrons, decreasing the number of heavy atoms getting hit and split in the fuel rods. It is that split, that fission, that provides the energy that heats the water in the reactor and produces the steam that drives the electricity-generating turbines. Generally, the more collisions, the more heat generated. An increase in heat means more steam to spin a turbine; fewer reactions means less heat, less steam and less electrical output. But it doesn’t mean no heat.

The water that drives the turbines also cools the fuel rods. It needs to circulate and somehow get cooled down when it is away from the reactor core. Even with control rods inserted, there are still reactions generating heat, and that heat needs to be extracted from the reactor or all kinds of trouble ensues–from too-high pressure breaching containment to melting the cladding on fuel rods, fires, and hydrogen explosions. This is why the term LOCA–a loss of coolant accident–is a scary one to nuclear watchdogs (and, theoretically, to nuclear regulators, too).

So, even when they are not producing electricity, nuclear reactors still need cooling. They still need a power source to make that cooling happen, and they still need a coolant, which, all across the United States and most of the rest of the world, means water.

Water that is increasingly growing too warm or too scarce. . . at least in the summer. . . you know, when it’s hot. . . and demand for electricity increases.

In fact, Braidwood is not the only US plant that has encountered problems this sultry season:

[A] spokeswoman for the Midwest Independent System Operator, which operates the regional grid, said that another plant had shut down because its water intake pipes were now above the water level of the body from which it draws its cooling water. Another is “partially curtailed.”

That spokeswoman can’t, it seems, tell us which plants she is talking about because that information “is considered competitive.” (Good to know that the Midwest Independent System Operator has its priorities straight. . . . Hey, that sounds like a hint! Anyone in the Midwest notice a nearby power plant curtailing operations?)

So, not isolated. . . and also not a surprise–not to the Nature Climate Change people this year, and not to the industry, itself. . . 17 years ago. The Electric Power Research Institute (EPRI), a non-profit group of scientists and engineers funded by the good folks who generate electricity (a group that has a noticeable overlap with the folks that own nuclear plants), released a study in 1995 that specifically warned of the threat a warming climate posed to electrical generation. The EPRI study predicted that rising levels of atmospheric carbon dioxide would make power production less efficient and more expensive, while at the same time increasing demand.

And climate predictions have only grown more dire since then.

Add to that mix one more complicating factor: when the intake water is warmer, the water expelled by the plant is warmer, too. And there are environmental protections in many areas that limit how hot that “waste” water can be. There have been instances in the past where thermoelectric plants have had to curtail production because their exhaust water exceeded allowable temperatures.

And yet, despite a myriad of potential problems and two decades of climate warnings, it is sobering to note that none of the US reactors were built to account for any of this. . . because all American nuclear reactors predate these revelations. That is not to say nuclear operators haven’t had 20 years (give or take) to plan for these exigencies, but it is to say that, by-and-large, they haven’t. (Beyond, that is, as described above, simply lobbying for higher water temperature limits. That’s a behavior all too recognizable when it comes to nuclear operators and regulators–when nuclear plants can’t meet requirements, don’t upgrade the procedures or equipment, just “upgrade” the requirements.)

But, rather than using all this knowledge to motivate a transition away from nuclear power, rather than using the time to begin decommissioning these dinosaurs, nuclear operators have instead pushed for license extensions–an additional 20 years beyond the original 40-year design. And, to date, the Nuclear Regulatory Commission has yet to reject a single extension request.

And now the nuclear industry–with the full faith and credit of the federal government–is looking to double down on this self-imposed ignorance. The “Advanced Passive” AP1000 reactors approved earlier this year for Georgia’s Plant Vogtle (and on track for South Carolina, too) may be called “advanced,” but they are still PWRs and they still require a large reserve of cool, circulating water to keep them operating and nominally safe.

The government is offering $8.3 billion of financing for the Georgia reactors at rock-bottom rates, and with very little cash up front from the plant owners. There have already been numerous concerns about the safety of the AP1000 design and the economic viability of the venture; factor in the impact of climate change, and the new Vogtle reactors are pretty much the definition of “boondoggle”–a wasteful, pointless project that gives the appearance of value while in reality delivering none. It is practically designed to fail, leaving the government (read: taxpayers and ratepayers) holding the bag.

But as a too-darn-hot July ends, that’s the woo being pitched by the nuclear industry and its government sweethearts. Rather than invest the money in technologies that actually thrive during the long, hot days of summer, rather than invest in improved efficiency and conservation programs that would both create jobs and decrease electrical demand (and carbon emissions), rather than seizing the moment, making, as it were, hay while the sun shines, it seems the US will choose to bury its head in the sand and call it shade.

Nuclear power was already understood to be dirty, dangerous and absurdly expensive, even without the pressures of climate change. Far from being the answer to growing greenhouse gas emissions, the lifecycle of nuclear power–from mining and milling to transport and disposal–has turned out to be a significant contributor to the problem. And now, the global weirding brought on by that problem has made nuclear even more precarious–more perilous and more pricy–and so an even more pernicious bet.

According to the Kinsey Report, every average man you know would prefer to play his favorite sport when the temperature is low. But when the thermometer goes way up and the weather is sizzling hot, a gob for his squab, a marine for his beauty queen, a GI for his cutie-pie–and now it turns out–the hour for nuclear power is not.

‘Cause it’s too darn hot.
It’s too. Darn. Hot.

Book Salon – Martin Cohen and Andrew McKillop, The Doomsday Machine: The High Price of Nuclear Energy, the World’s Most Dangerous Fuel

[Note: On Sunday afternoon, I hosted FDL Book Salon, featuring a live Q&A with Martin Cohen and Andrew McKillop, authors of The Doomsday Machine: The High Price of Nuclear Energy, the World’s Most Dangerous Fuel. This is a repost of that discussion.]

Little more than 13 months after the world’s third major civilian nuclear accident in three decades, it might be surprising to find that one of the words commonly used in context with nuclear power these days is “renaissance.” Though more the product of public relations than real observation, the concept of a “nuclear renaissance” took hold over the last decade purportedly as a response to the rising price of fossil fuels and a growing concern over climate change–and it became so much a part of the lingua franca that even after an earthquake and tsunami triggered the massive crisis at the Fukushima Daiichi nuclear power plant (a crisis that continues to this day), media reports still try to assess how much of a renaissance we will see post-Fukushima, rather than laugh at the idea that a renaissance ever existed.

The persistence of this current narrative is, of course, not an accident. For while it is debatable how good nuclear power is at meeting the world’s energy needs–the ability of the nuclear industry to gobble public money, peddle influence and reinvent its image, all while still clinging to generations-old technology, is practically the stuff of legend.

Or should we say “the stuff of myth?” In The Doomsday Machine: The High Price of Nuclear Energy, the World’s Most Dangerous Fuel, environmentalist and social philosopher Martin Cohen, and energy economist Andrew McKillop explain that myths are the one thing the nuclear industrial complex is consistently good at producing. From the early echoes of “Atoms for Peace,” through the spin-tastic triple lie of “clean, safe, and too cheap to meter,” right up to the current green-washed renaissance, The Doomsday Machine describes over 60 years of industry morphing and mythmaking.

Even before the world witnessed the devastation of Hiroshima and Nagasaki, the splitting of the atom had a certain aura about it (if not a glow), and the idea of harnessing the raw power that had leveled two Japanese cities for something “good” was a seductive one. There was something godlike about manipulating nature’s most basic building blocks, and something oh-so-modern and evolved about doing it with the power of science. Cohen and McKillop discuss how, from its earliest days, the nuclear industry used the contrast of clean-cut men in white lab coats manipulating dials versus filthy miners feeding dirty coal into furnaces belching smoke to brand nuclear power as “the energy of the future.”

This is the first of eight myths that The Doomsday Machine attempts to debunk by citing history, economics, psychology, statistics and, yes, science, too. In addition to the failure of nuclear power to ever realize its future (I am reminded here of the old quote about Brazil–a country, by the way, with nuclear hassles of its own–“Brazil is the country of the future–and always will be”), today’s book takes on the myths of nuclear being clean and green, reliable and safe, cheap and desirable as an investment, and immune to the tug of geopolitics. Some of those ideas are more absurd than others, but, being the myths that they are, as Cohen and McKillop detail, none of them are true.

Interesting, too, beyond the long and sordid list of nuclear accidents and mishaps–and that list is indeed very long–are some of the other forces that have, over the years, meshed conveniently with the nuclear industry’s quest for relevance and cash.

Take, for example, that contrast with coal. It is true that coal is ancient and dirty, but coal is also predominantly turned into its usable form by union workers. Uranium, on the other hand, is mined in many places by a much-less-organized workforce, and nuclear power plants, The Doomsday Machine says, are largely maintained by contract workers. Was it just a coincidence that world leaders hostile to organized labor–Margaret Thatcher and Ronald Reagan, for example–were also vocal advocates for the expansion of nuclear power? Cohen and McKillop think not.

Another example, and one perhaps even more controversial, is the alliance of nuclear power proponents with a certain segment of the environmental movement. In what the authors term an alliance of “Baptists and Bootleggers,” strange bedfellows have found common cause to attack fossil fuels, demand that their use be curtailed to lessen carbon emissions, and then declare that nuclear energy is the only alternative poised to fill the gap.

Cohen and McKillop rightly explain that nuclear is far from a carbon-neutral energy source. As my own writing has explored many times, from mining to refining, from transport to waste storage, from energy intensive plant construction to the fact that you need a steady energy supply to run a nuclear plant safely, nuclear energy has a carbon footprint of awesome proportions. But The Doomsday Machine goes a little further, asserting that “climate change was originally, and remains, a rich country’s hobby,” and that the focus on CO2 is more political and less progressive than the IPCC and its defenders would have you believe.

From my perspective, it is a point that gives one pause. There certainly are some advocates of atomic energy–“elite greens” as the authors call them–that have used climate change to cloak their naked infatuation with nuclear power (and Cohen and McKillop name names), but does that mean that climate science itself is suspect? It is a question more complicated than one might think–and certainly one more nuanced than anyone will hear in the election year coverage of President Obama’s “all of the above” energy “strategy.”

But it is a question–one of many I hope Martin Cohen and Andrew McKillop will endeavor to answer as they join us here today.

[Click here to read my two-hour chat with Cohen and McKillop.]

Fukushima One Year On: Many Revelations, Few Surprises

Satellite image of Fukushima Daiichi showing damage on 3/14/11. (photo: digitalglobe)

One year on, perhaps the most surprising thing about the Fukushima crisis is that nothing is really that surprising. Almost every problem encountered was at some point foreseen, almost everything that went wrong was previously discussed, and almost every system that failed was predicted to fail, sometimes decades earlier. Not all by one person, obviously, not all at one time or in one place, but if there is anything to be gleaned from sorting through the multiple reports now being released to commemorate the first anniversary of the Tohoku earthquake and tsunami–and the start of the crisis at Fukushima Daiichi–it is that, while there is much still to be learned, we already know what is to be done. . . because we knew it all before the disaster began.

This is not to say that any one person–any plant manager, nuclear worker, TEPCO executive, or government official–had all that knowledge on hand or had all the guaranteed right answers when each moment of decision arose. We know that because the various timelines and reconstructions now make it clear that several individual mistakes were made in the minutes, hours and days following the dual natural disasters. Instead, the analysis a year out teaches us that any honest examination of the history of nuclear power, and any responsible engagement of the numerous red flags and warnings would have taken the Fukushima disasters (yes, plural) out of the realm of “if,” and placed it squarely into the category of “when.”

Following closely the release of findings by the Rebuild Japan Foundation and a report from the Union of Concerned Scientists (both discussed here in recent weeks), a new paper, “Fukushima in review: A complex disaster, a disastrous response,” written by two members of the Rebuild Japan Foundation for the Bulletin of the Atomic Scientists, provides a detailed and disturbing window on a long list of failures that exacerbated the problems at Japan’s crippled Fukushima Daiichi facility. Among them, they include misinterpreting on-site observations, the lack of applicable protocols, inadequate industry guidelines, and the absence of both a definitive chain of command and the physical presence of the supposed commanders. But first and foremost, existing at the core of the crisis that has seen three reactor meltdowns, numerous explosions, radioactive contamination of land, air and sea, and the mass and perhaps permanent evacuation of tens of thousands of residents from a 20 kilometer exclusion zone, is what the Bulletin paper calls “The trap of the absolute safety myth”:

Why were preparations for a nuclear accident so inadequate? One factor was a twisted myth–a belief in the “absolute safety” of nuclear power. This myth has been propagated by interest groups seeking to gain broad acceptance for nuclear power: A public relations effort on behalf of the absolute safety of nuclear power was deemed necessary to overcome the strong anti-nuclear sentiments connected to the atomic bombings of Hiroshima and Nagasaki.

Since the 1970s, disaster risk has been deliberately downplayed by what has been called Japan’s nuclear mura (“village” or “community”)–that is, nuclear advocates in industry, government, and academia, along with local leaders hoping to have nuclear power plants built in their municipalities. The mura has feared that if the risks related to nuclear energy were publicly acknowledged, citizens would demand that plants be shut down until the risks were removed. Japan’s nuclear community has also feared that preparation for a nuclear accident would in itself become a source of anxiety for people living near the plants.

The power of this myth, according to the authors, is strong. It led the government to actively cancel safety drills in the wake of previous, smaller nuclear incidents–claiming that they would cause “unnecessary anxiety”–and it led to a convenient classification for the events of last March 11:

The word used then to describe risks that would cause unnecessary public anxiety and misunderstanding was “unanticipated.” Significantly, TEPCO has been using this very word to describe the height of the March 11 tsunami that cut off primary and backup power to Fukushima Daiichi.

Ignoring for this moment the debate about what cut off primary power, the idea that the massive size of the tsunami–not to mention what it would do to the nuclear plant–was unanticipated is, as this paper observes, absurd. Studies of a 9th Century tsunami, as well as an internal report by TEPCO’s own nuclear energy division, showed there was a definite risk of large tsunamis at Fukushima. TEPCO dismissed these warnings as “academic.” The Japanese government, too, while recommending nuclear facilities consider these findings, did not mandate any changes.

Instead, both the industry and the government chose to perpetuate the “safety myth,” fearing that any admission of a need to improve or retrofit safety systems would result in “undue anxiety”–and, more importantly, public pressure to make costly changes.

Any of that sound familiar?

“No one could have possibly anticipated. . .” is not just the infamous Bush administration take on the attacks of 9/11/2001, it has become the format for many of the current excuses on why a disaster like Fukushima could happen once, and why little need now be done to make sure it doesn’t happen again.

In fact, reading the BAS Fukushima review, it is dishearteningly easy to imagine you are reading about the state of the American nuclear reactor fleet. Swapping in places like Three Mile Island, Palisades, Browns Ferry, Davis-Besse, San Onofre, Diablo Canyon, Vermont Yankee, and Indian Point for the assorted Japanese nuclear power plants is far too easy, and replacing the names of the much-maligned Japanese regulatory agencies with “Nuclear Regulatory Commission” and “Department of Energy” is easier still.

As observed a number of times over the last year, because of unusual events and full-on disasters at many of the aging nuclear plants in the US, American regulators have a pretty good idea of what can go wrong–and they have even made some attempts to suggest measures should be taken to prevent similar events in the future. But industry pressure has kept those suggestions to a minimum, and the cozy relationship between regulators and the regulated has diluted and dragged out many mandates to the point where they serve more as propaganda than prophylaxis.

Even with the Fukushima disaster still visible and metastasizing, requiring constant attention from every level of Japanese society and billions of Yen in emergency spending, even with isotopes from the Daiichi reactors still showing up in American food, air and water, and even with dozens of US reactors operating under circumstances eerily similar to pre-quake Fukushima, the US Nuclear Regulatory Commission has treated its own post-Fukushima taskforce recommendations with a pointed lack of urgency. And the pushback from the nuclear industry and their bought-and-paid-for benefactors in the government at the mere hint of new regulations or better enforcement indicates that America might have its own safety myth trap–though, in the US, it is propagated by the generations-old marketing mantra, “Clean, safe and too cheap to meter.”

Mythical, too, is the notion that the federal government has the regulatory infrastructure or political functionality to make any segment of that tripartite lie ring closer to true. From NRC chairman Gregory Jaczko’s bizarre faith in a body that has failed to act on his pre-Fukushima initiatives while actively conspiring to oust him, to the Union of Concerned Scientists’ assuming a regulatory “can opener,” the US may have a bigger problem than the absolute safety myth, and that would be the myth of a government with the will or ability to assure that safety.

Which, of course, is more than a shame–it’s a crime. With so many obvious flaws in the technology–from the costs of mining, importing and refining fuel to the costs of building an maintaining reactors, from the crisis in spent fuel storage to the “near misses” and looming disasters at aging facilities–with so many other industrialized nations now choosing to phase out nuclear and ramp up renewables, and with the lessons of Fukushima now so loud and clear, the path forward for the US should not be difficult to delineate.

Nuclear power is too dirty, too dangerous and too expensive to justify any longer. No one in America should assume that the willpower or wherewithal to manage these problems would magically appear when nothing sufficient has materialized in the last fifty years. Leaders should not mistake luck for efficacy, nor should they pretend birds of a feather are unrelated black swans. They know better, and they knew all they needed to know long before last year’s triple meltdown.

Nuclear is not in a “renaissance,” it is in its death throes. Now is the time to cut financial losses and guard against more precious ones. The federal government should take the $54.5 billion it pledged to the nuclear industry and use it instead to increase efficiency, conservation, and non-fissile/non-fossil energy innovation.

But you already knew that.

* * *

Extra Credit:

Compare and contrast this 25-minute video from Al Jazeera and the Center for Investigative Reporting with what you read in the Bulletin of the Atomic Scientists report mentioned above. For that matter, contrast it with the two longer but somehow less rigorous videos from Frontline, which were discussed here and here.

Also, there are events all over the globe this weekend to commemorate the first anniversary of the Tohoku earthquake and the nuclear crisis it triggered. To find an event in your area, see this list from Beyond Nuclear and the Freeze our Fukushimas Campaign.

Too Cheap to Meter, Too Expensive to Compete

“Clean, safe, and too cheap to meter.” This sunny tagline from the early days of atomic energy has more recently become the quickest way to sum up how dark and dismal its prospects are today–as in, nuclear power has proven itself to be unclean, unsafe, and prohibitively expensive. “Clean, safe and too cheap to meter” now sounds less like boastful marketing, and more like a schoolyard taunt.

The numbers of ways nuclear power plants have betrayed their Madison Avenue mantra has pretty much been the backbeat of this column for nearly ten months now, and 2012 keeps up the cadence.

Exelon Corporation, the nation’s largest owner of nuclear facilities, has already hit a sour note. . . or two.

First, Exelon and Constellation Energy, another major nuclear operator that Exelon agreed to buy last April, have just seen Citigroup downgrade their stock from “buy” to “neutral.” The reason this time, it seems, is not due to the shaky future of nuclear holdings, but instead due to the falling price of natural gas. Gas prices have hit a two-year low thanks to the glut of gas from a nation gone frack-happy.

But why should a Citigroup not worry about the value of nuclear stocks when current problems have required costly shutdowns and repairs, and future improvements that might (might) be required post-Fukushima will necessitate more capital outflow? One need look no further than the same Exelon portfolio, as reflected in a separate story out just one week later:

The U.S. Nuclear Regulatory Commission wants Exelon Corporation to detail its plan regarding a decommissioning fund shortfall for the Limerick Unit 1 nuclear power plant in Pottstown.

“Once we receive the (request for additional information) response, we will make a determination regarding reasonable assurance of adequate decommissioning funding for the plant,” said Neil Sheehan, NRC Public Affairs, via email on Wednesday.

Sheehan said Exelon planned to request rate relief from the Pennsylvania Public Utilities Commission later this year to address the deficit.

“The relief, if approved, would take effect at the beginning of 2013,” Sheehan said.

In other words, a nuclear facility isn’t only ridiculously expensive while it is up and running, generating some power–and so, in theory, some revenue–a nuclear plant is a massive liability for years (decades, really) after it is shut down.

Decommissioning a plant is a process that the Nuclear Regulatory Commission requires operators to finish within 60 years. Yes, it can take that long to safely dismantle a facility, store its moderately radioactive parts and entomb its massively radioactive reactor shell. The cost, as estimated by the NRC itself, is “$300 million or more.”

Indeed, the emphasis should be on “more.” The NRC’s lowball figure not only assumes everything goes smoothly and there are no nasty discoveries, like, say, radioactive contamination of surrounding ground or water, it assumes a constant dollar value over the life (death?) of the decommission. Take note, for instance, that the fund for the decommissioning of one Limerick reactor is at present required to be over $628 million.

But again, why would that not more seriously affect the rating of a company like Exelon, with its vast stable of aged, faulty reactors? Because Exelon, as is the case for all its nuclear brethren, doesn’t expect to have shoulder the costs by themselves–if at all.

Feeling a little light in the decommissioning fund? Do not fear! As pointed out in the story above, Exelon expects rate relief. In other words, Pennsylvania power consumers will pick up the tab in the form of increased electric bills.

Worried the rate hike won’t quite cover it? No problem! As the NRC hints at here and has proven elsewhere, when push comes to dangerous, radioactive shove, the federal government will cover any shortfalls. After all, the alternative–a halfway or half-assed shutdown–is not an acceptable policy option.

Concerned that even with a rate hike and a government bailout something still might go wrong, resulting in pricey lawsuits? Hush, now! Thanks to the Price-Anderson Act, the liability of the nuclear plant operator is remarkably limited.

This is all part-and-parcel of the standard obfuscation procedure and pass-the-buck accounting that allows the nuclear industry to pretend to compete in the energy marketplace. Exelon executives no doubt love to praise the free market, but they are possibly the only ones that get away for anything close to free. Their taxes are discounted, their infrastructure is subsidized, their loans are guaranteed, and their accidents are indemnified, all by state and federal governments, which means all by taxpayers–taxpayers already paying up front for higher energy bills.

Lest this story be misinterpreted, the answer is not, of course, to permit more fracking to continue to drive down the price of natural gas–that option is as rife with dangers as it is ridiculously shortsighted. No, the answer is to take into account all of the money that really goes into nuclear power generation when costing out energy options. Take just a fraction of what the US government expends to backstop atomic energy and invest it instead in improved efficiency, conservation programs, and truly renewable alternatives, and then see what power source can really claim the mantle of clean, safe, and too cheap to meter.