Two Years On, Fukushima Raises Many Questions, Provides One Clear Answer

Fukushima's threats to health and the environment continue. (graphic: Surian Soosay via flickr)

Fukushima’s threats to health and the environment continue. (graphic: Surian Soosay via flickr)

You can’t say you have all the answers if you haven’t asked all the questions. So, at a conference on the medical and ecological consequences of the Fukushima nuclear disaster, held to commemorate the second anniversary of the earthquake and tsunami that struck northern Japan, there were lots of questions. Questions about what actually happened at Fukushima Daiichi in the first days after the quake, and how that differed from the official report; questions about what radionuclides were in the fallout and runoff, at what concentrations, and how far they have spread; and questions about what near- and long-term effects this disaster will have on people and the planet, and how we will measure and recognize those effects.

A distinguished list of epidemiologists, oncologists, nuclear engineers, former government officials, Fukushima survivors, anti-nuclear activists and public health advocates gathered at the invitation of The Helen Caldicott Foundation and Physicians for Social Responsibility to, if not answer all these question, at least make sure they got asked. Over two long days, it was clear there is much still to be learned, but it was equally clear that we already know that the downsides of nuclear power are real, and what’s more, the risks are unnecessary. Relying on this dirty, dangerous and expensive technology is not mandatory–it’s a choice. And when cleaner, safer, and more affordable options are available, the one answer we already have is that nuclear is a choice we should stop making and a risk we should stop taking.

“No one died from the accident at Fukushima.” This refrain, as familiar as multiplication tables and sounding about as rote when recited by acolytes of atomic power, is a close mirror to versions used to downplay earlier nuclear disasters, like Chernobyl and Three Mile Island (as well as many less infamous events), and is somehow meant to be the discussion-ender, the very bottom-line of the bottom-line analysis that is used to grade global energy options. “No one died” equals “safe” or, at least, “safer.” Q.E.D.

But beyond the intentional blurring of the differences between an “accident” and the probable results of technical constraints and willful negligence, the argument (if this saw can be called such) cynically exploits the space between solid science and the simple sound bite.

“Do not confuse narrowly constructed research hypotheses with discussions of policy,” warned Steve Wing, Associate Professor of Epidemiology at the University of North Carolina’s Gillings School of Public Health. Good research is an exploration of good data, but, Wing contrasted, “Energy generation is a public decision made by politicians.”

Surprisingly unsurprising

A public decision, but not necessarily one made in the public interest. Energy policy could be informed by health and environmental studies, such as the ones discussed at the Fukushima symposium, but it is more likely the research is spun or ignored once policy is actually drafted by the politicians who, as Wing noted, often sport ties to the nuclear industry.

The link between politicians and the nuclear industry they are supposed to regulate came into clear focus in the wake of the March 11, 2011 Tohoku earthquake and tsunami–in Japan and the United States.

The boiling water reactors (BWRs) that failed so catastrophically at Fukushima Daiichi were designed and sold by General Electric in the 1960s; the general contractor on the project was Ebasco, a US engineering company that, back then, was still tied to GE. General Electric had bet heavily on nuclear and worked hand-in-hand with the US Atomic Energy Commission (AEC–the precursor to the NRC, the Nuclear Regulatory Commission) to promote civilian nuclear plants at home and abroad. According to nuclear engineer Arnie Gundersen, GE told US regulators in 1965 that without quick approval of multiple BWR projects, the giant energy conglomerate would go out of business.

It was under the guidance of GE and Ebasco that the rocky bluffs where Daiichi would be built were actually trimmed by 10 meters to bring the power plant closer to the sea, the water source for the reactors’ cooling systems–but it was under Japanese government supervision that serious and repeated warnings about the environmental and technological threats to Fukushima were ignored for another generation.

Failures at Daiichi were completely predictable, observed David Lochbaum, the director of the Nuclear Safety Project at the Union of Concerned Scientists, and numerous upgrades were recommended over the years by scientists and engineers. “The only surprising thing about Fukushima,” said Lochbaum, “is that no steps were taken.”

The surprise, it seems, should cross the Pacific. Twenty-two US plants mirror the design of Fukushima Daiichi, and many stand where they could be subject to earthquakes or tsunamis. Even without those seismic events, some US plants are still at risk of Fukushima-like catastrophic flooding. Prior to the start of the current Japanese crisis, the Nuclear Regulatory Commission learned that the Oconee Nuclear Plant in Seneca, South Carolina, was at risk of a major flood from a dam failure upstream. In the event of a dam breach–an event the NRC deems more likely than the odds that were given for the 2011 tsunami–the flood at Oconee would trigger failures at all four reactors. Beyond hiding its own report, the NRC has taken no action–not before Fukushima, not since.

The missing link

But it was the health consequences of nuclear power–both from high-profile disasters, as well as what is considered normal operation–that dominated the two days of presentations at the New York Academy of Medicine. Here, too, researchers and scientists attempted to pose questions that governments, the nuclear industry and its captured regulators prefer to ignore, or, perhaps more to the point, omit.

Dr. Hisako Sakiyama, a member of the Fukushima Nuclear Accident Independent Investigation Commission, has been studying the effects of low-dose radiation. Like others at the symposium, Dr. Sakiyama documented the linear, no-threshold risk model drawn from data across many nuclear incidents. In essence, there is no point at which it can be said, “Below this amount of radiation exposure, there is no risk.” And the greater the exposure, the greater the risk of health problems, be they cancers or non-cancer diseases.

Dr. Sakiyama contrasted this with the radiation exposure limits set by governments. Japan famously increased what it called acceptable exposure quite soon after the start of the Fukushima crisis, and, as global background radiation levels increase as a result of the disaster, it is feared this will ratchet up what is considered “safe” in the United States, as the US tends to discuss limits in terms of exposure beyond annual average background radiation. Both approaches lack credibility and expose an ugly truth. “Debate on low-dose radiation risk is not scientific,” explained Sakiyama, “but political.”

And the politics are posing health and security risks in Japan and the US.

Akio Matsumura, who spoke at the Fukushima conference in his role as founder of the Global Forum of Spiritual and Parliamentary Leaders for Human Survival, described a situation at the crippled Japanese nuclear plant that is much more perilous, even today, than leaders are willing to acknowledge. Beyond the precarious state of the spent fuel pool above reactor four, Matsumura also cited the continued melt-throughs of reactor cores (which could lead to a steam explosion), the high levels of radiation at reactors one and three (making any repairs impossible), and the unprotected pipes retrofitted to help cool reactors and spent fuel. “Probability of another disaster,” Matsumura warned, “is higher than you think.”

Matsumura lamented that investigations of both the technical failures and the health effects of the disaster are not well organized. “There is no longer a link between scientists and politicians,” said Matsumura, adding, “This link is essential.”

The Union of Concerned Scientists’ Lochbaum took it further. “We are losing the no-brainers with the NRC,” he said, implying that what should be accepted as basic regulatory responsibility is now subject to political debate. With government agencies staffed by industry insiders, “the deck is stacked against citizens.”

Both Lochbaum and Arnie Gundersen criticized the nuclear industry’s lack of compliance, even with pre-Fukushima safety requirements. And the industry’s resistance undermines nuclear’s claims of being competitive on price. “If you made nuclear power plants meet existing law,” said Gundersen, “they would have to shut because of cost.”

But without stronger safety rules and stricter enforcement, the cost is borne by people instead.

Determinate data, indeterminate risk

While the two-day symposium was filled with detailed discussions of chemical and epidemiologic data collected throughout the nuclear age–from Hiroshima through Fukushima–a cry for more and better information was a recurring theme. In a sort of wily corollary to “garbage in, garbage out,” experts bemoaned what seem like deliberate holes in the research.

Even the long-term tracking study of those exposed to the radiation and fallout in Japan after the atomic blasts at Hiroshima and Nagasaki–considered by many the gold-standard in radiation exposure research because of the large sample size and the long period of time over which data was collected–raises as many questions as it answers.

The Hiroshima-Nagasaki data was referenced heavily by Dr. David Brenner of the Center for Radiological Research, Columbia University College of Physicians and Surgeons. Dr. Brenner praised the study while using it to buttress his opinion that, while harm from any nuclear event is unfortunate, the Fukushima crisis will result in relatively few excess cancer deaths–something like 500 in Japan, and an extra 2,000 worldwide.

“There is an imbalance of individual risk versus overall anxiety,” said Brenner.

But Dr. Wing, the epidemiologist from the UNC School of Public Health, questioned the reliance on the atom bomb research, and the relatively rosy conclusions those like Dr. Brenner draw from it.

“The Hiroshima and Nagasaki study didn’t begin till five years after the bombs were dropped,” cautioned Wing. “Many people died before research even started.” The examination of cancer incidence in the survey, Wing continued, didn’t begin until 1958–it misses the first 13 years of data. Research on “Black Rain” survivors (those who lived through the heavy fallout after the Hiroshima and Nagasaki bombings) excludes important populations from the exposed group, despite those populations’ high excess mortality, thus driving down reported cancer rates for those counted.

The paucity of data is even more striking in the aftermath of the Three Mile Island accident, and examinations of populations around American nuclear power plants that haven’t experienced high-profile emergencies are even scarcer. “Studies like those done in Europe have never been done in the US,” said Wing with noticeable regret. Wing observed that a German study has shown increased incidences of childhood leukemia near operating nuclear plants.

There is relatively more data on populations exposed to radioactive contamination in the wake of the Chernobyl nuclear accident. Yet, even in this catastrophic case, the fact that the data has been collected and studied owes much to the persistence of Alexey Yablokov of the Russian Academy of Sciences. Yablokov has been examining Chernobyl outcomes since the early days of the crisis. His landmark collection of medical records and the scientific literature, Chernobyl: Consequences of the Catastrophe for People and the Environment, has its critics, who fault its strong warnings about the long-term dangers of radiation exposure, but it is that strident tone that Yablokov himself said was crucial to the evolution of global thinking about nuclear accidents.

Because of pressure from the scientific community and, as Yablokov stressed at the New York conference, pressure from the general public, as well, reaction to accidents since Chernobyl has evolved from “no immediate risk,” to small numbers who are endangered, to what is now called “indeterminate risk.”

Calling risk “indeterminate,” believe it or not, actually represents a victory for science, because it means more questions are asked–and asking more questions can lead to more and better answers.

Yablokov made it clear that it is difficult to estimate the real individual radiation dose–too much data is not collected early in a disaster, fallout patterns are patchy and different groups are exposed to different combinations of particles–but he drew strength from the volumes and variety of data he’s examined.

Indeed, as fellow conference participant, radiation biologist Ian Fairlie, observed, people can criticize Yablokov’s advocacy, but the data is the data, and in the Chernobyl book, there is lots of data.

Complex and consequential

Data presented at the Fukushima symposium also included much on what might have been–and continues to be–released by the failing nuclear plant in Japan, and how that contamination is already affecting populations on both sides of the Pacific.

Several of those present emphasized the need to better track releases of noble gasses, such as xenon-133, from the earliest days of a nuclear accident–both because of the dangers these elements pose to the public and because gas releases can provide clues to what is unfolding inside a damaged reactor. But more is known about the high levels of radioactive iodine and cesium contamination that have resulted from the Fukushima crisis.

In the US, since the beginning of the disaster, five west coast states have measured elevated levels of iodine-131 in air, water and kelp samples, with the highest airborne concentrations detected from mid-March through the end of April 2011. Iodine concentrates in the thyroid, and, as noted by Joseph Mangano, director of the Radiation and Public Health Project, fetal thyroids are especially sensitive. In the 15 weeks after fallout from Fukushima crossed the Pacific, the western states reported a 28-percent increase in newborn (congenital) hypothyroidism (underactive thyroid), according to the Open Journal of Pediatrics. Mangano contrasted this with a three-percent drop in the rest of the country during the same period.

The most recent data from Fukushima prefecture shows over 44 percent of children examined there have thyroid abnormalities.

Of course, I-131 has a relatively short half-life; radioactive isotopes of cesium will have to be tracked much longer.

With four reactors and densely packed spent fuel pools involved, Fukushima Daiichi’s “inventory” (as it is called) of cesium-137 dwarfed Chernobyl’s at the time of its catastrophe. Consequently, and contrary to some of the spin out there, the Cs-137 emanating from the Fukushima plant is also out-pacing what happened in Ukraine.

Estimates put the release of Cs-137 in the first months of the Fukushima crisis at between 64 and 114 petabecquerels (this number includes the first week of aerosol release and the first four months of ocean contamination). And the damaged Daiichi reactors continue to add an additional 240 million becquerels of radioactive cesium to the environment every single day. Chernobyl’s cesium-137 release is pegged at about 84 petabecquerels. (One petabecquerel equals 1,000,000,000,000,000 becquerels.) By way of comparison, the nuclear “device” dropped on Hiroshima released 89 terabecquerels (1,000 terabecquerels equal one petabecquerel) of Cs-137, or, to put it another way, Fukushima has already released more than 6,400 times as much radioactive cesium as the Hiroshima bomb.

The effects of elevated levels of radioactive cesium are documented in several studies across post-Chernobyl Europe, but while the implications for public health are significant, they are also hard to contain in a sound bite. As medical genetics expert Wladimir Wertelecki explained during the conference, a number of cancers and other serious diseases emerged over the first decade after Chernobyl, but the cycles of farming, consuming, burning and then fertilizing with contaminated organic matter will produce illness and genetic abnormalities for many decades to come. Epidemiological studies are only descriptive, Wertelecki noted, but they can serve as a “foundation for cause and effect.” The issues ahead for all of those hoping to understand the Fukushima disaster and the repercussions of the continued use of nuclear power are, as Wertelecki pointed out, “Where you study and what you ask.”

One of the places that will need some of the most intensive study is the Pacific Ocean. Because Japan is an island, most of Fukushima’s fallout plume drifted out to sea. Perhaps more critically, millions of gallons of water have been pumped into and over the damaged reactors and spent fuel pools at Daiichi, and because of still-unplugged leaks, some of that water flows into the ocean every day. (And even if those leaks are plugged and the nuclear fuel is stabilized someday, mountain runoff from the area will continue to discharge radionuclides into the water.) Fukushima’s fisheries are closed and will remain so as far into the future as anyone can anticipate. Bottom feeders and freshwater fish exhibit the worst levels of cesium, but they are only part of the picture. Ken Beusseler, a marine scientist at Woods Hole Oceanographic Institute, described a complex ecosystem of ocean currents, food chains and migratory fish, some of which carry contamination with them, some of which actually work cesium out of their flesh over time. The seabed and some beaches will see increases in radio-contamination. “You can’t keep just measuring fish,” warned Beusseler, implying that the entire Pacific Rim has involuntarily joined a multidimensional long-term radiation study.

For what it’s worth

Did anyone die as a result of the nuclear disaster that started at Fukushima Daiichi two years ago? Dr. Sakiyama, the Japanese investigator, told those assembled at the New York symposium that 60 patients died while being moved from hospitals inside the radiation evacuation zone–does that count? Joseph Mangano has reported on increases in infant deaths in the US following the arrival of Fukushima fallout–does that count? Will cancer deaths or future genetic abnormalities, be they at the low or high end of the estimates, count against this crisis?

It is hard to judge these answers when the question is so very flawed.

As discussed by many of the participants throughout the Fukushima conference, a country’s energy decisions are rooted in politics. Nuclear advocates would have you believe that their favorite fuel should be evaluated inside an extremely limited universe, that there is some level of nuclear-influenced harm that can be deemed “acceptable,” that questions stem from the necessity of atomic energy instead of from whether civilian nuclear power is necessary at all.

The nuclear industry would have you do a cost-benefit analysis, but they’d get to choose which costs and benefits you analyze.

While all this time has been and will continue to be spent on tracking the health and environmental effects of nuclear power, it isn’t a fraction of a fraction of the time that the world will be saddled with fission’s dangerous high-level radioactive trash (a problem without a real temporary storage program, forget a permanent disposal solution). And for all the money that has been and will continue to be spent compiling the health and environmental data, it is a mere pittance when compared with the government subsidies, liability waivers and loan guarantees lavished upon the owners and operators of nuclear plants.

Many individual details will continue to emerge, but a basic fact is already clear: nuclear power is not the world’s only energy option. Nor are the choices limited to just fossil and fissile fuels. Nuclear lobbyists would love to frame the debate–as would advocates for natural gas, oil or coal–as cold calculations made with old math. But that is not where the debate really resides.

If nuclear reactors were the only way to generate electricity, would 500 excess cancer deaths be acceptable? How about 5,000? How about 50,000? If nuclear’s projected mortality rate comes in under coal’s, does that make the deaths–or the high energy bills, for that matter–more palatable?

As the onetime head of the Tennessee Valley Authority, David Freeman, pointed out toward the end of the symposium, every investment in a new nuclear, gas or coal plant is a fresh 40-, 50-, or 60-year commitment to a dirty, dangerous and outdated technology. Every favor the government grants to nuclear power triggers an intense lobbying effort on behalf of coal or gas, asking for equal treatment. Money spent bailing out the past could be spent building a safer and more sustainable future.

Nuclear does not exist in a vacuum; so neither do its effects. There is much more to be learned about the medical and ecological consequences of the Fukushima nuclear disaster–but that knowledge should be used to minimize and mitigate the harm. These studies do not ask and are not meant to answer, “Is nuclear worth it?” When the world already has multiple alternatives–not just in renewable technologies, but also in conservation strategies and improvements in energy efficiency–the answer is already “No.”

A version of this story previously appeared on Truthout; no version may be reprinted without permission.

Advertisements

Book Salon – Joseph Mangano, Author of Mad Science: The Nuclear Power Experiment

[Note: On Saturday afternoon, I hosted FDL Book Salon, featuring a live Q&A with Joseph Mangano, author of Mad Science: The Nuclear Power Experiment. This is a repost of that discussion.]

In December of 1962, Consolidated Edison, New York City’s main purveyor of electricity, announced that it had submitted an official proposal to the US Atomic Energy Commission (the AEC, the precursor to today’s Nuclear Regulatory Commission) for the construction of a nuclear power plant on a site called Ravenswood. . . in Queens. . . on the East River. . . directly across from the United Nations. . . within five miles of roughly five million people.

Ravenswood became the site of America’s first demonstrations against nuclear power. It inspired petitions to President John F. Kennedy and NYC Mayor Robert Wagner, and the possibility of a nuclear reactor in such a densely populated area even invited public skepticism from the pro-nuclear head of the AEC, David Lilienthal. Finally, after a year of pressure, led by the borough’s community leaders, Con Edison withdrew their application.

But within three years, reports suggested Con Ed had plans to build a nuclear plant under Central Park. After that idea was roundly criticized, the utility publicly proposed a reactor complex under Welfare Island (now known as Roosevelt Island), instead.

Despite the strong support of Laurence Rockefeller, the brother of New York State’s governor, the Welfare Island project disappeared from Con Ed’s plans by 1970. . . soon to be replaced by the idea of a nuclear “jetport”–artificial islands to be built in the ocean just south of New York City that would host a pair of commercial reactors.

Does that sound like madness? Well, from today’s perspective–with Three Mile Island, Chernobyl, and now Fukushima universally understood as synonyms for disaster–it probably does. But there was a time before those meltdowns when nuclear power still had a bit of a glow, when, despite (or because of) the devastation from the atomic bombs dropped on Japan, many believed that the atom’s awesome power could be harnessed for good; a time when dangerous and deadly mishaps at a number of the nation’s earlier reactors were easily excused or kept completely secret.

In Mad Science: The Nuclear Power Experiment, Joseph Mangano returns to that time, and then methodically pulls back the curtain on the real history of nuclear folly and failure, and the energy source that continues to masquerade as clean, safe, and “too cheap to meter.”

From Chalk River, in Canada, the world’s first reactor meltdown, through Idaho’s EBR-1, Waltz Mill, PA, Santa Susana’s failed Sodium Reactor Experiment, the Idaho National Lab explosion that killed three, Fermi-1, which almost irradiated Detroit, and, of course, Three Mile Island, Mad Science provides a chilling catalog of nuclear accidents, all of which were disasters in their own right, and all of which illustrate a troubling pattern of safety breeches followed by secrecy and lies.

Nuclear power’s precarious existence is not, of course, just a story for the history books, and Mangano also details the state of America’s 104 remaining reactors. So many of today’s plants have problems, too, but perhaps the maddest thing about the mad science of civilian atomic power is that science often plays a minor role in decisions about the technology’s future.

From its earliest days, this supposedly super-cheap energy was financially unsustainable. By the mid-1950s, private insurers had turned their back on nuclear facilities, fearing the massive payouts that would follow any accident. The nuclear industry turned to the US government, and in 1957, the Price-Anderson Act limited a plant’s liability to an artificially low but apparently insurable figure–any damage beyond that would be covered by US taxpayers. Shippingport, America’s first large-scale commercial nuclear reactor, was built entirely with government money, and that is hardly an isolated story. Even before the Three Mile Island meltdown, Wall Street had walked away from nuclear energy, meaning that no new reactors could be built without massive federal loan guarantees.

Indeed, the cost of construction, when piled on top of the cost of fueling, skilled labor, operation and upkeep, made the prospect of opening a new nuclear plant financially unpalatable. So, as Mangano explains, nuclear utilities turned to another strategy for making their vertical profitable, one familiar to any student of late Western capitalism. Rather than build, energy companies would instead buy. Since the 1990s, the nuclear sector has seen massive consolidation. Mergers and acquisitions have created nuclear mega-corporations, like Exelon, Duke, and Entergy, which run multiple reactors across many facilities in many states. And the supposed regulators of the industry, the NRC, has encouraged this behavior by rubberstamping dozens upon dozens of 20-year license extensions, turning reactors that were supposed to be nearing the end of their functional lives into valuable assets.

But the pain of nuclear power isn’t only measured in meltdowns and money. Whether firing on all cylinders (as it were) or falling apart, nuclear plants have proven to be dangerous to the populations they are supposed to serve. Joseph Mangano, an epidemiologist by trade, and director of the Radiation and Public Health Project (RPHP), has made a career out of trying to understand the immediate and long-term effects of nuclear madness, be it from fallout, leaks, or the “permissible levels” of radioactive isotopes that are regularly released from reactors as part of normal operation.

As I mentioned earlier this week, Mangano and the RPHP are the inheritors of the Baby Tooth Survey, the groundbreaking examination of strontium levels in children born before, during and after the age of atmospheric nuclear bomb tests. The discovery of high levels of Sr-90, a radioactive byproduct of uranium fission, in the baby teeth of children born in the 1950s and ’60s led directly to the Partial Test Ban Treaty in 1963.

Mangano’s work has built on the original survey, linking elevated Sr-90 levels to cancer, and examining the increases in strontium in the bodies of children that lived close to nuclear power plants. And all of this is explained in great detail in Mad Science.

The author has also applied his expertise to the fallout from the ongoing Fukushima disaster. Last December, Mangano and Janette Sherman published a peer-reviewed article in the International Journal of Health Sciences (PDF) stating that in the 14 weeks following the start of the Japanese nuclear crisis, an estimated 14,000 excess deaths in the United States could be linked to radioactive fallout from Fukushima Daiichi. (RPHP has since revised that estimate–upward–to almost 22,000 deaths (PDF).)

That last study is not specifically detailed in Mad Science, but I hope we can touch on it today–along with some of the many equally maddening “experiments” in nuclear energy production that Mangano carefully unwraps in his book.

[Click here to read my two-hour chat with Joe Mangano.]

Book Salon – Martin Cohen and Andrew McKillop, The Doomsday Machine: The High Price of Nuclear Energy, the World’s Most Dangerous Fuel

[Note: On Sunday afternoon, I hosted FDL Book Salon, featuring a live Q&A with Martin Cohen and Andrew McKillop, authors of The Doomsday Machine: The High Price of Nuclear Energy, the World’s Most Dangerous Fuel. This is a repost of that discussion.]

Little more than 13 months after the world’s third major civilian nuclear accident in three decades, it might be surprising to find that one of the words commonly used in context with nuclear power these days is “renaissance.” Though more the product of public relations than real observation, the concept of a “nuclear renaissance” took hold over the last decade purportedly as a response to the rising price of fossil fuels and a growing concern over climate change–and it became so much a part of the lingua franca that even after an earthquake and tsunami triggered the massive crisis at the Fukushima Daiichi nuclear power plant (a crisis that continues to this day), media reports still try to assess how much of a renaissance we will see post-Fukushima, rather than laugh at the idea that a renaissance ever existed.

The persistence of this current narrative is, of course, not an accident. For while it is debatable how good nuclear power is at meeting the world’s energy needs–the ability of the nuclear industry to gobble public money, peddle influence and reinvent its image, all while still clinging to generations-old technology, is practically the stuff of legend.

Or should we say “the stuff of myth?” In The Doomsday Machine: The High Price of Nuclear Energy, the World’s Most Dangerous Fuel, environmentalist and social philosopher Martin Cohen, and energy economist Andrew McKillop explain that myths are the one thing the nuclear industrial complex is consistently good at producing. From the early echoes of “Atoms for Peace,” through the spin-tastic triple lie of “clean, safe, and too cheap to meter,” right up to the current green-washed renaissance, The Doomsday Machine describes over 60 years of industry morphing and mythmaking.

Even before the world witnessed the devastation of Hiroshima and Nagasaki, the splitting of the atom had a certain aura about it (if not a glow), and the idea of harnessing the raw power that had leveled two Japanese cities for something “good” was a seductive one. There was something godlike about manipulating nature’s most basic building blocks, and something oh-so-modern and evolved about doing it with the power of science. Cohen and McKillop discuss how, from its earliest days, the nuclear industry used the contrast of clean-cut men in white lab coats manipulating dials versus filthy miners feeding dirty coal into furnaces belching smoke to brand nuclear power as “the energy of the future.”

This is the first of eight myths that The Doomsday Machine attempts to debunk by citing history, economics, psychology, statistics and, yes, science, too. In addition to the failure of nuclear power to ever realize its future (I am reminded here of the old quote about Brazil–a country, by the way, with nuclear hassles of its own–“Brazil is the country of the future–and always will be”), today’s book takes on the myths of nuclear being clean and green, reliable and safe, cheap and desirable as an investment, and immune to the tug of geopolitics. Some of those ideas are more absurd than others, but, being the myths that they are, as Cohen and McKillop detail, none of them are true.

Interesting, too, beyond the long and sordid list of nuclear accidents and mishaps–and that list is indeed very long–are some of the other forces that have, over the years, meshed conveniently with the nuclear industry’s quest for relevance and cash.

Take, for example, that contrast with coal. It is true that coal is ancient and dirty, but coal is also predominantly turned into its usable form by union workers. Uranium, on the other hand, is mined in many places by a much-less-organized workforce, and nuclear power plants, The Doomsday Machine says, are largely maintained by contract workers. Was it just a coincidence that world leaders hostile to organized labor–Margaret Thatcher and Ronald Reagan, for example–were also vocal advocates for the expansion of nuclear power? Cohen and McKillop think not.

Another example, and one perhaps even more controversial, is the alliance of nuclear power proponents with a certain segment of the environmental movement. In what the authors term an alliance of “Baptists and Bootleggers,” strange bedfellows have found common cause to attack fossil fuels, demand that their use be curtailed to lessen carbon emissions, and then declare that nuclear energy is the only alternative poised to fill the gap.

Cohen and McKillop rightly explain that nuclear is far from a carbon-neutral energy source. As my own writing has explored many times, from mining to refining, from transport to waste storage, from energy intensive plant construction to the fact that you need a steady energy supply to run a nuclear plant safely, nuclear energy has a carbon footprint of awesome proportions. But The Doomsday Machine goes a little further, asserting that “climate change was originally, and remains, a rich country’s hobby,” and that the focus on CO2 is more political and less progressive than the IPCC and its defenders would have you believe.

From my perspective, it is a point that gives one pause. There certainly are some advocates of atomic energy–“elite greens” as the authors call them–that have used climate change to cloak their naked infatuation with nuclear power (and Cohen and McKillop name names), but does that mean that climate science itself is suspect? It is a question more complicated than one might think–and certainly one more nuanced than anyone will hear in the election year coverage of President Obama’s “all of the above” energy “strategy.”

But it is a question–one of many I hope Martin Cohen and Andrew McKillop will endeavor to answer as they join us here today.

[Click here to read my two-hour chat with Cohen and McKillop.]

Too Cheap to Meter, Too Expensive to Compete

“Clean, safe, and too cheap to meter.” This sunny tagline from the early days of atomic energy has more recently become the quickest way to sum up how dark and dismal its prospects are today–as in, nuclear power has proven itself to be unclean, unsafe, and prohibitively expensive. “Clean, safe and too cheap to meter” now sounds less like boastful marketing, and more like a schoolyard taunt.

The numbers of ways nuclear power plants have betrayed their Madison Avenue mantra has pretty much been the backbeat of this column for nearly ten months now, and 2012 keeps up the cadence.

Exelon Corporation, the nation’s largest owner of nuclear facilities, has already hit a sour note. . . or two.

First, Exelon and Constellation Energy, another major nuclear operator that Exelon agreed to buy last April, have just seen Citigroup downgrade their stock from “buy” to “neutral.” The reason this time, it seems, is not due to the shaky future of nuclear holdings, but instead due to the falling price of natural gas. Gas prices have hit a two-year low thanks to the glut of gas from a nation gone frack-happy.

But why should a Citigroup not worry about the value of nuclear stocks when current problems have required costly shutdowns and repairs, and future improvements that might (might) be required post-Fukushima will necessitate more capital outflow? One need look no further than the same Exelon portfolio, as reflected in a separate story out just one week later:

The U.S. Nuclear Regulatory Commission wants Exelon Corporation to detail its plan regarding a decommissioning fund shortfall for the Limerick Unit 1 nuclear power plant in Pottstown.

“Once we receive the (request for additional information) response, we will make a determination regarding reasonable assurance of adequate decommissioning funding for the plant,” said Neil Sheehan, NRC Public Affairs, via email on Wednesday.

Sheehan said Exelon planned to request rate relief from the Pennsylvania Public Utilities Commission later this year to address the deficit.

“The relief, if approved, would take effect at the beginning of 2013,” Sheehan said.

In other words, a nuclear facility isn’t only ridiculously expensive while it is up and running, generating some power–and so, in theory, some revenue–a nuclear plant is a massive liability for years (decades, really) after it is shut down.

Decommissioning a plant is a process that the Nuclear Regulatory Commission requires operators to finish within 60 years. Yes, it can take that long to safely dismantle a facility, store its moderately radioactive parts and entomb its massively radioactive reactor shell. The cost, as estimated by the NRC itself, is “$300 million or more.”

Indeed, the emphasis should be on “more.” The NRC’s lowball figure not only assumes everything goes smoothly and there are no nasty discoveries, like, say, radioactive contamination of surrounding ground or water, it assumes a constant dollar value over the life (death?) of the decommission. Take note, for instance, that the fund for the decommissioning of one Limerick reactor is at present required to be over $628 million.

But again, why would that not more seriously affect the rating of a company like Exelon, with its vast stable of aged, faulty reactors? Because Exelon, as is the case for all its nuclear brethren, doesn’t expect to have shoulder the costs by themselves–if at all.

Feeling a little light in the decommissioning fund? Do not fear! As pointed out in the story above, Exelon expects rate relief. In other words, Pennsylvania power consumers will pick up the tab in the form of increased electric bills.

Worried the rate hike won’t quite cover it? No problem! As the NRC hints at here and has proven elsewhere, when push comes to dangerous, radioactive shove, the federal government will cover any shortfalls. After all, the alternative–a halfway or half-assed shutdown–is not an acceptable policy option.

Concerned that even with a rate hike and a government bailout something still might go wrong, resulting in pricey lawsuits? Hush, now! Thanks to the Price-Anderson Act, the liability of the nuclear plant operator is remarkably limited.

This is all part-and-parcel of the standard obfuscation procedure and pass-the-buck accounting that allows the nuclear industry to pretend to compete in the energy marketplace. Exelon executives no doubt love to praise the free market, but they are possibly the only ones that get away for anything close to free. Their taxes are discounted, their infrastructure is subsidized, their loans are guaranteed, and their accidents are indemnified, all by state and federal governments, which means all by taxpayers–taxpayers already paying up front for higher energy bills.

Lest this story be misinterpreted, the answer is not, of course, to permit more fracking to continue to drive down the price of natural gas–that option is as rife with dangers as it is ridiculously shortsighted. No, the answer is to take into account all of the money that really goes into nuclear power generation when costing out energy options. Take just a fraction of what the US government expends to backstop atomic energy and invest it instead in improved efficiency, conservation programs, and truly renewable alternatives, and then see what power source can really claim the mantle of clean, safe, and too cheap to meter.