Two Years On, Fukushima Raises Many Questions, Provides One Clear Answer

Fukushima's threats to health and the environment continue. (graphic: Surian Soosay via flickr)

Fukushima’s threats to health and the environment continue. (graphic: Surian Soosay via flickr)

You can’t say you have all the answers if you haven’t asked all the questions. So, at a conference on the medical and ecological consequences of the Fukushima nuclear disaster, held to commemorate the second anniversary of the earthquake and tsunami that struck northern Japan, there were lots of questions. Questions about what actually happened at Fukushima Daiichi in the first days after the quake, and how that differed from the official report; questions about what radionuclides were in the fallout and runoff, at what concentrations, and how far they have spread; and questions about what near- and long-term effects this disaster will have on people and the planet, and how we will measure and recognize those effects.

A distinguished list of epidemiologists, oncologists, nuclear engineers, former government officials, Fukushima survivors, anti-nuclear activists and public health advocates gathered at the invitation of The Helen Caldicott Foundation and Physicians for Social Responsibility to, if not answer all these question, at least make sure they got asked. Over two long days, it was clear there is much still to be learned, but it was equally clear that we already know that the downsides of nuclear power are real, and what’s more, the risks are unnecessary. Relying on this dirty, dangerous and expensive technology is not mandatory–it’s a choice. And when cleaner, safer, and more affordable options are available, the one answer we already have is that nuclear is a choice we should stop making and a risk we should stop taking.

“No one died from the accident at Fukushima.” This refrain, as familiar as multiplication tables and sounding about as rote when recited by acolytes of atomic power, is a close mirror to versions used to downplay earlier nuclear disasters, like Chernobyl and Three Mile Island (as well as many less infamous events), and is somehow meant to be the discussion-ender, the very bottom-line of the bottom-line analysis that is used to grade global energy options. “No one died” equals “safe” or, at least, “safer.” Q.E.D.

But beyond the intentional blurring of the differences between an “accident” and the probable results of technical constraints and willful negligence, the argument (if this saw can be called such) cynically exploits the space between solid science and the simple sound bite.

“Do not confuse narrowly constructed research hypotheses with discussions of policy,” warned Steve Wing, Associate Professor of Epidemiology at the University of North Carolina’s Gillings School of Public Health. Good research is an exploration of good data, but, Wing contrasted, “Energy generation is a public decision made by politicians.”

Surprisingly unsurprising

A public decision, but not necessarily one made in the public interest. Energy policy could be informed by health and environmental studies, such as the ones discussed at the Fukushima symposium, but it is more likely the research is spun or ignored once policy is actually drafted by the politicians who, as Wing noted, often sport ties to the nuclear industry.

The link between politicians and the nuclear industry they are supposed to regulate came into clear focus in the wake of the March 11, 2011 Tohoku earthquake and tsunami–in Japan and the United States.

The boiling water reactors (BWRs) that failed so catastrophically at Fukushima Daiichi were designed and sold by General Electric in the 1960s; the general contractor on the project was Ebasco, a US engineering company that, back then, was still tied to GE. General Electric had bet heavily on nuclear and worked hand-in-hand with the US Atomic Energy Commission (AEC–the precursor to the NRC, the Nuclear Regulatory Commission) to promote civilian nuclear plants at home and abroad. According to nuclear engineer Arnie Gundersen, GE told US regulators in 1965 that without quick approval of multiple BWR projects, the giant energy conglomerate would go out of business.

It was under the guidance of GE and Ebasco that the rocky bluffs where Daiichi would be built were actually trimmed by 10 meters to bring the power plant closer to the sea, the water source for the reactors’ cooling systems–but it was under Japanese government supervision that serious and repeated warnings about the environmental and technological threats to Fukushima were ignored for another generation.

Failures at Daiichi were completely predictable, observed David Lochbaum, the director of the Nuclear Safety Project at the Union of Concerned Scientists, and numerous upgrades were recommended over the years by scientists and engineers. “The only surprising thing about Fukushima,” said Lochbaum, “is that no steps were taken.”

The surprise, it seems, should cross the Pacific. Twenty-two US plants mirror the design of Fukushima Daiichi, and many stand where they could be subject to earthquakes or tsunamis. Even without those seismic events, some US plants are still at risk of Fukushima-like catastrophic flooding. Prior to the start of the current Japanese crisis, the Nuclear Regulatory Commission learned that the Oconee Nuclear Plant in Seneca, South Carolina, was at risk of a major flood from a dam failure upstream. In the event of a dam breach–an event the NRC deems more likely than the odds that were given for the 2011 tsunami–the flood at Oconee would trigger failures at all four reactors. Beyond hiding its own report, the NRC has taken no action–not before Fukushima, not since.

The missing link

But it was the health consequences of nuclear power–both from high-profile disasters, as well as what is considered normal operation–that dominated the two days of presentations at the New York Academy of Medicine. Here, too, researchers and scientists attempted to pose questions that governments, the nuclear industry and its captured regulators prefer to ignore, or, perhaps more to the point, omit.

Dr. Hisako Sakiyama, a member of the Fukushima Nuclear Accident Independent Investigation Commission, has been studying the effects of low-dose radiation. Like others at the symposium, Dr. Sakiyama documented the linear, no-threshold risk model drawn from data across many nuclear incidents. In essence, there is no point at which it can be said, “Below this amount of radiation exposure, there is no risk.” And the greater the exposure, the greater the risk of health problems, be they cancers or non-cancer diseases.

Dr. Sakiyama contrasted this with the radiation exposure limits set by governments. Japan famously increased what it called acceptable exposure quite soon after the start of the Fukushima crisis, and, as global background radiation levels increase as a result of the disaster, it is feared this will ratchet up what is considered “safe” in the United States, as the US tends to discuss limits in terms of exposure beyond annual average background radiation. Both approaches lack credibility and expose an ugly truth. “Debate on low-dose radiation risk is not scientific,” explained Sakiyama, “but political.”

And the politics are posing health and security risks in Japan and the US.

Akio Matsumura, who spoke at the Fukushima conference in his role as founder of the Global Forum of Spiritual and Parliamentary Leaders for Human Survival, described a situation at the crippled Japanese nuclear plant that is much more perilous, even today, than leaders are willing to acknowledge. Beyond the precarious state of the spent fuel pool above reactor four, Matsumura also cited the continued melt-throughs of reactor cores (which could lead to a steam explosion), the high levels of radiation at reactors one and three (making any repairs impossible), and the unprotected pipes retrofitted to help cool reactors and spent fuel. “Probability of another disaster,” Matsumura warned, “is higher than you think.”

Matsumura lamented that investigations of both the technical failures and the health effects of the disaster are not well organized. “There is no longer a link between scientists and politicians,” said Matsumura, adding, “This link is essential.”

The Union of Concerned Scientists’ Lochbaum took it further. “We are losing the no-brainers with the NRC,” he said, implying that what should be accepted as basic regulatory responsibility is now subject to political debate. With government agencies staffed by industry insiders, “the deck is stacked against citizens.”

Both Lochbaum and Arnie Gundersen criticized the nuclear industry’s lack of compliance, even with pre-Fukushima safety requirements. And the industry’s resistance undermines nuclear’s claims of being competitive on price. “If you made nuclear power plants meet existing law,” said Gundersen, “they would have to shut because of cost.”

But without stronger safety rules and stricter enforcement, the cost is borne by people instead.

Determinate data, indeterminate risk

While the two-day symposium was filled with detailed discussions of chemical and epidemiologic data collected throughout the nuclear age–from Hiroshima through Fukushima–a cry for more and better information was a recurring theme. In a sort of wily corollary to “garbage in, garbage out,” experts bemoaned what seem like deliberate holes in the research.

Even the long-term tracking study of those exposed to the radiation and fallout in Japan after the atomic blasts at Hiroshima and Nagasaki–considered by many the gold-standard in radiation exposure research because of the large sample size and the long period of time over which data was collected–raises as many questions as it answers.

The Hiroshima-Nagasaki data was referenced heavily by Dr. David Brenner of the Center for Radiological Research, Columbia University College of Physicians and Surgeons. Dr. Brenner praised the study while using it to buttress his opinion that, while harm from any nuclear event is unfortunate, the Fukushima crisis will result in relatively few excess cancer deaths–something like 500 in Japan, and an extra 2,000 worldwide.

“There is an imbalance of individual risk versus overall anxiety,” said Brenner.

But Dr. Wing, the epidemiologist from the UNC School of Public Health, questioned the reliance on the atom bomb research, and the relatively rosy conclusions those like Dr. Brenner draw from it.

“The Hiroshima and Nagasaki study didn’t begin till five years after the bombs were dropped,” cautioned Wing. “Many people died before research even started.” The examination of cancer incidence in the survey, Wing continued, didn’t begin until 1958–it misses the first 13 years of data. Research on “Black Rain” survivors (those who lived through the heavy fallout after the Hiroshima and Nagasaki bombings) excludes important populations from the exposed group, despite those populations’ high excess mortality, thus driving down reported cancer rates for those counted.

The paucity of data is even more striking in the aftermath of the Three Mile Island accident, and examinations of populations around American nuclear power plants that haven’t experienced high-profile emergencies are even scarcer. “Studies like those done in Europe have never been done in the US,” said Wing with noticeable regret. Wing observed that a German study has shown increased incidences of childhood leukemia near operating nuclear plants.

There is relatively more data on populations exposed to radioactive contamination in the wake of the Chernobyl nuclear accident. Yet, even in this catastrophic case, the fact that the data has been collected and studied owes much to the persistence of Alexey Yablokov of the Russian Academy of Sciences. Yablokov has been examining Chernobyl outcomes since the early days of the crisis. His landmark collection of medical records and the scientific literature, Chernobyl: Consequences of the Catastrophe for People and the Environment, has its critics, who fault its strong warnings about the long-term dangers of radiation exposure, but it is that strident tone that Yablokov himself said was crucial to the evolution of global thinking about nuclear accidents.

Because of pressure from the scientific community and, as Yablokov stressed at the New York conference, pressure from the general public, as well, reaction to accidents since Chernobyl has evolved from “no immediate risk,” to small numbers who are endangered, to what is now called “indeterminate risk.”

Calling risk “indeterminate,” believe it or not, actually represents a victory for science, because it means more questions are asked–and asking more questions can lead to more and better answers.

Yablokov made it clear that it is difficult to estimate the real individual radiation dose–too much data is not collected early in a disaster, fallout patterns are patchy and different groups are exposed to different combinations of particles–but he drew strength from the volumes and variety of data he’s examined.

Indeed, as fellow conference participant, radiation biologist Ian Fairlie, observed, people can criticize Yablokov’s advocacy, but the data is the data, and in the Chernobyl book, there is lots of data.

Complex and consequential

Data presented at the Fukushima symposium also included much on what might have been–and continues to be–released by the failing nuclear plant in Japan, and how that contamination is already affecting populations on both sides of the Pacific.

Several of those present emphasized the need to better track releases of noble gasses, such as xenon-133, from the earliest days of a nuclear accident–both because of the dangers these elements pose to the public and because gas releases can provide clues to what is unfolding inside a damaged reactor. But more is known about the high levels of radioactive iodine and cesium contamination that have resulted from the Fukushima crisis.

In the US, since the beginning of the disaster, five west coast states have measured elevated levels of iodine-131 in air, water and kelp samples, with the highest airborne concentrations detected from mid-March through the end of April 2011. Iodine concentrates in the thyroid, and, as noted by Joseph Mangano, director of the Radiation and Public Health Project, fetal thyroids are especially sensitive. In the 15 weeks after fallout from Fukushima crossed the Pacific, the western states reported a 28-percent increase in newborn (congenital) hypothyroidism (underactive thyroid), according to the Open Journal of Pediatrics. Mangano contrasted this with a three-percent drop in the rest of the country during the same period.

The most recent data from Fukushima prefecture shows over 44 percent of children examined there have thyroid abnormalities.

Of course, I-131 has a relatively short half-life; radioactive isotopes of cesium will have to be tracked much longer.

With four reactors and densely packed spent fuel pools involved, Fukushima Daiichi’s “inventory” (as it is called) of cesium-137 dwarfed Chernobyl’s at the time of its catastrophe. Consequently, and contrary to some of the spin out there, the Cs-137 emanating from the Fukushima plant is also out-pacing what happened in Ukraine.

Estimates put the release of Cs-137 in the first months of the Fukushima crisis at between 64 and 114 petabecquerels (this number includes the first week of aerosol release and the first four months of ocean contamination). And the damaged Daiichi reactors continue to add an additional 240 million becquerels of radioactive cesium to the environment every single day. Chernobyl’s cesium-137 release is pegged at about 84 petabecquerels. (One petabecquerel equals 1,000,000,000,000,000 becquerels.) By way of comparison, the nuclear “device” dropped on Hiroshima released 89 terabecquerels (1,000 terabecquerels equal one petabecquerel) of Cs-137, or, to put it another way, Fukushima has already released more than 6,400 times as much radioactive cesium as the Hiroshima bomb.

The effects of elevated levels of radioactive cesium are documented in several studies across post-Chernobyl Europe, but while the implications for public health are significant, they are also hard to contain in a sound bite. As medical genetics expert Wladimir Wertelecki explained during the conference, a number of cancers and other serious diseases emerged over the first decade after Chernobyl, but the cycles of farming, consuming, burning and then fertilizing with contaminated organic matter will produce illness and genetic abnormalities for many decades to come. Epidemiological studies are only descriptive, Wertelecki noted, but they can serve as a “foundation for cause and effect.” The issues ahead for all of those hoping to understand the Fukushima disaster and the repercussions of the continued use of nuclear power are, as Wertelecki pointed out, “Where you study and what you ask.”

One of the places that will need some of the most intensive study is the Pacific Ocean. Because Japan is an island, most of Fukushima’s fallout plume drifted out to sea. Perhaps more critically, millions of gallons of water have been pumped into and over the damaged reactors and spent fuel pools at Daiichi, and because of still-unplugged leaks, some of that water flows into the ocean every day. (And even if those leaks are plugged and the nuclear fuel is stabilized someday, mountain runoff from the area will continue to discharge radionuclides into the water.) Fukushima’s fisheries are closed and will remain so as far into the future as anyone can anticipate. Bottom feeders and freshwater fish exhibit the worst levels of cesium, but they are only part of the picture. Ken Beusseler, a marine scientist at Woods Hole Oceanographic Institute, described a complex ecosystem of ocean currents, food chains and migratory fish, some of which carry contamination with them, some of which actually work cesium out of their flesh over time. The seabed and some beaches will see increases in radio-contamination. “You can’t keep just measuring fish,” warned Beusseler, implying that the entire Pacific Rim has involuntarily joined a multidimensional long-term radiation study.

For what it’s worth

Did anyone die as a result of the nuclear disaster that started at Fukushima Daiichi two years ago? Dr. Sakiyama, the Japanese investigator, told those assembled at the New York symposium that 60 patients died while being moved from hospitals inside the radiation evacuation zone–does that count? Joseph Mangano has reported on increases in infant deaths in the US following the arrival of Fukushima fallout–does that count? Will cancer deaths or future genetic abnormalities, be they at the low or high end of the estimates, count against this crisis?

It is hard to judge these answers when the question is so very flawed.

As discussed by many of the participants throughout the Fukushima conference, a country’s energy decisions are rooted in politics. Nuclear advocates would have you believe that their favorite fuel should be evaluated inside an extremely limited universe, that there is some level of nuclear-influenced harm that can be deemed “acceptable,” that questions stem from the necessity of atomic energy instead of from whether civilian nuclear power is necessary at all.

The nuclear industry would have you do a cost-benefit analysis, but they’d get to choose which costs and benefits you analyze.

While all this time has been and will continue to be spent on tracking the health and environmental effects of nuclear power, it isn’t a fraction of a fraction of the time that the world will be saddled with fission’s dangerous high-level radioactive trash (a problem without a real temporary storage program, forget a permanent disposal solution). And for all the money that has been and will continue to be spent compiling the health and environmental data, it is a mere pittance when compared with the government subsidies, liability waivers and loan guarantees lavished upon the owners and operators of nuclear plants.

Many individual details will continue to emerge, but a basic fact is already clear: nuclear power is not the world’s only energy option. Nor are the choices limited to just fossil and fissile fuels. Nuclear lobbyists would love to frame the debate–as would advocates for natural gas, oil or coal–as cold calculations made with old math. But that is not where the debate really resides.

If nuclear reactors were the only way to generate electricity, would 500 excess cancer deaths be acceptable? How about 5,000? How about 50,000? If nuclear’s projected mortality rate comes in under coal’s, does that make the deaths–or the high energy bills, for that matter–more palatable?

As the onetime head of the Tennessee Valley Authority, David Freeman, pointed out toward the end of the symposium, every investment in a new nuclear, gas or coal plant is a fresh 40-, 50-, or 60-year commitment to a dirty, dangerous and outdated technology. Every favor the government grants to nuclear power triggers an intense lobbying effort on behalf of coal or gas, asking for equal treatment. Money spent bailing out the past could be spent building a safer and more sustainable future.

Nuclear does not exist in a vacuum; so neither do its effects. There is much more to be learned about the medical and ecological consequences of the Fukushima nuclear disaster–but that knowledge should be used to minimize and mitigate the harm. These studies do not ask and are not meant to answer, “Is nuclear worth it?” When the world already has multiple alternatives–not just in renewable technologies, but also in conservation strategies and improvements in energy efficiency–the answer is already “No.”

A version of this story previously appeared on Truthout; no version may be reprinted without permission.

End-of-Summer News Puts Nuclear Renaissance on Permanent Vacation

Calvert Cliffs Nuclear Power Plant, Units 1 & 2, near Lusby Maryland. (photo: NRCgov)

The Nuclear Regulatory Commission cannot issue a license for the construction and operation of a new nuclear reactor in Maryland–that is the ruling of the NRC’s Atomic Safety and Licensing Board (ASLB) handed down Thursday.

In their decision, the ASLB agreed with intervenors that the Calvert Cliffs 3 reactor project planned for the shores of Chesapeake Bay violated the Atomic Energy Act’s prohibition against “foreign ownership, control, or domination.” UniStar, the parent company for the proposal, is wholly owned by French energy giant Électricité de France (EDF).

EDF had originally partnered with Constellation Energy, the operator of two existing Calvert Cliffs reactors, but Constellation pulled out of the project in 2010. At the time, Constellation balked at government requirements that Constellation put $880 million down on a federal loan guarantee of $7.6 billion (about 12 percent). Constellation wanted to risk no more than one or two percent of their own capital, terms the feds were then willing to meet if Constellation and EDF could guarantee the plant’s completion. Constellation also found that requirement too onerous.

Constellation has since been purchased by Exelon.

The ASLB decision technically gives EDF 60 days to find a new American partner, but given the history and the current state of the energy market, new suitors seem highly unlikely. It marks only the second time a license has been denied by the ASLB. (The first, for the Byron, Illinois plant in 1984 was overturned on appeal. Byron opened the next year, and Illinois’s groundwater has never been the same.) The NRC also declined to grant a license to the South Texas Project late last year when US-based NRG Energy (corporate ID courtesy of the Department of Redundancy Department) pulled out of the project, leaving Japanese-owned Toshiba as the only stakeholder.

The Calvert Cliffs intervenors were led by the Nuclear Information and Resource Service (NIRS), which has been fighting Calvert Cliffs 3 almost since its inception. NIRS was joined by Beyond Nuclear, Public Citizen and Southern Maryland CARES.

Michael Mariotte, Executive director of NIRS, called Thursday’s decision “a blow to the so-called ‘nuclear renaissance,'” noting that back in 2007, when permit requests were submitted for Calvert Cliffs 3, the project was considered the “flagship” of a coming fleet of new reactors. “Now,” said Mariotte, “it is a symbol for the deservedly failed revival of nuclear power in the US.”

A symbol, yes, but far from the only symbol.

Earlier in the week, Exelon notified the Nuclear Regulatory Commission that it would withdraw its application for an “early site permit” for a proposed nuclear facility near Victoria, Texas. A combined construction and operating license was originally sought for two reactors back in 2008, but by 2010, with demand down and nuclear costs continuing to skyrocket, Exelon backed off that request, essentially downgrading it to “just keeping a toe in the water” status.

Now, with the price of a new nuke plant climbing higher still–even though the economy remains sluggish–and with natural gas prices continuing to fall, that toe has been toweled dry. “Today’s withdrawal brings an end to all project activity,” said an Exelon statement issued Tuesday.

And on Monday, the operators of the troubled San Onofre Nuclear Generating Station let it be known that they would start removing the radioactive fuel from Unit 3 sometime in September. Unit 3 has been offline since it scrammed after a heat exchange tube leaked radioactive steam at the end of January. Later inspection revealed that numerous tubes on the unit, as well as on its previously shut-down twin, showed alarming and dangerous amounts of wear.

Removing the fuel rods all-but-confirms what most experts already knew: SONGS 3 will never come back online. Southern California Edison, the plant’s majority operator, might not want to admit that, but earlier in August, SCE announced plans for 730 layoffs, roughly a third of the plant’s workforce. That size of reduction makes repairing, testing and restarting both San Onofre reactors unfeasible. Or, to look at it through the other end of the telescope, as David Lochbaum, director of the Union of Concerned Scientists put it, “reducing the scope of required work at the jobsite is a good thing to do before discharging workers.”

Mothballing Unit 3 will reduce the workload, but with the entire facility offline for most of this year, SONGS is already an economic sinkhole. Strangely, despite failing to generate a single kilowatt of energy in eight months, SCE and co-owner San Diego Gas & Electric have continued to collect $54 million of revenue every month from California ratepayers.

The California Public Utilities Commission has to investigate rate cuts when a plant fails to deliver for nine months (so, officially, November and December, for the two SONGS reactors), but that process would start sooner if it were determined that a reactor would never come back into service. Neither San Onofre reactor will restart before the end of the year, and it is now clearer than a San Diego summer sky that the number 3 reactor never will. Scientists know this, engineers know this, utilities commissioners know this, and even Southern California Edison knows this–but SCE won’t say it because that would hasten the start of rate rollbacks.

Calvert Cliffs being in the news this time of year also calls to mind how well nuclear plants do in hurricanes. . . as in, not very well at all. Last year, as Hurricane Irene marched up the Atlantic coast, the two existing reactors at Calvert Cliffs had to scram when a dislodged piece of siding caused a short in the main transformer and an “unanticipated explosion within the Protected Area resulting in visible damage to permanent structures or equipment.”

As fate would have it, this year’s “I” storm, Isaac, necessitated the shutdown of Entergy’s Waterford plant, outside of New Orleans. In fact, many plants are required to shutdown when facing winds in excess of 74 mph, “rendering them,” as Beyond Nuclear put it, “a liability, rather than an asset during a natural disaster.”

And Hurricane Isaac was but one possible symptom of a warming climate that has proven problematic for nuclear plants this summer. Braidwood, Illinois and Millstone in Connecticut had to curtail output or temporarily shutdown this summer because the source water used for cooling the reactors rose above prescribed limits. With summer temperatures expected to climb even more in coming years–and with droughts also anticipated–incidents like these (and like those at Hope Creek, New Jersey, and Limerick, Pennsylvania, in 2010) will become more frequent, leaving nuclear power less able to deliver electricity during the months when it is most in demand.

Of course, the summer of 2012 has also had its share of what might be called “classic” nuclear plant problems–power supply failures, radioactive leaks, and other so-called “unusual incidents.” One of the most recent, yet another accident at Palisades in Michigan:

On Sunday [August 12], Palisades shut down due to a leak of radioactive and acidic primary coolant, escaping from safety-critical control rod drive mechanisms attached to its degraded lid, atop its “worst embrittled reactor pressure vessel in the U.S.”

And all of the above has happened during a summer when the NRC finally acknowledged (or, more accurately, when a federal court ordered the NRC to acknowledge) that it could no longer pretend the US had a solution for its nuclear waste storage crisis. The commission has stopped issuing new operating licenses, license extensions and construction licenses until it can craft a plan for dealing with the mountains of spent nuclear fuel continuing to accumulate at nuclear facilities across the country.

So, there is no nuclear renaissance. There wasn’t one before this summer–there wasn’t even one before everyone came to know about the Fukushima disaster. The dangers and costs that have followed nuclear power since its inception have firmly branded it as a technology of the past. The events of 2011 and 2012 have provided more evidence that nuclear power is done as a meaningful energy proposition. The sooner America can also be done with the myth of a possible, sometime, “who knows when,” “maybe next year” nuclear renaissance, the sooner the federal government can stop propping up the unsafe and unviable nuclear industry. And the sooner the US can begin a real technological and economic rebirth.

For Nuclear Power This Summer, It’s Too Darn Hot


You know that expression, “Hotter than July?” Well, this July, July was hotter than July. Depending on what part of the country you live in, it was upwards of three degrees hotter this July than the 20th Century average. Chicago, Denver, Detroit, Indianapolis and St. Louis are each “on a pace to shatter their all-time monthly heat records.” And “when the thermometer goes way up and the weather is sizzling hot,” as the Cole Porter song goes, demand for electricity goes way up, too.

During this peak period, wouldn’t it be great to know that you can depend on the expensive infrastructure your government and, frankly, you as ratepayers and taxpayers have been backstopping all these years? Yeah, that would be great. . . so would an energy source that was truly clean, safe, and too cheap to meter. Alas, to the surprise of no one (at least no one who watches this space), nuclear power, the origin of that catchy if not quite Porter-esque tripartite promise, cannot.

Take, for example, Braidwood, the nuclear facility that supplies much of Chicago with electricity:

It was so hot last week, a twin-unit nuclear plant in northeastern Illinois had to get special permission to continue operating after the temperature of the water in its cooling pond rose to 102 degrees.

It was the second such request from the plant, Braidwood, which opened 26 years ago. When it was new, the plant had permission to run as long as the temperature of its cooling water pond, a 2,500-acre lake in a former strip mine, remained below 98 degrees; in 2000 it got permission to raise the limit to 100 degrees.

The problem, said Craig Nesbit, a spokesman for Exelon, which owns the plant, is not only the hot days, but the hot nights. In normal weather, the water in the lake heats up during the day but cools down at night; lately, nighttime temperatures have been in the 90s, so the water does not cool.

But simply getting permission to suck in hotter water does not make the problem go away. When any thermoelectric plant (that includes nuclear, coal and some gas) has to use water warmer than design parameters, the cooling is less effective, and that loss of cooling potential means that plants need to dial down their output to keep from overheating and damaging core components. Exelon said it needed special dispensation to keep Braidwood running because of the increased demand for electricity during heat waves such as the one seen this July, but missing from the statement is that the very design of Braidwood means that it will run less efficiently and supply less power during hot weather.

Also missing from Exelon’s rationale is that they failed to meet one of the basic criteria for their exception:

At the Union of Concerned Scientists, a group that is generally critical of nuclear power safety, David Lochbaum, a nuclear engineer, said the commission was supposed to grant exemptions from its rules if there was no increase or only a minor increase in risk, and if the situation could not have been foreseen.

The safety argument “is likely solid and justified,’’ he wrote in an e-mail, but “it is tough to argue (rationally) that warming water conditions are unforeseen.’’ That is a predictable consequence of global warming, he said.

Quite. Lochbaum cites two instances from the hot summer of 2010–New Jersey’s Hope Creek nuclear station and Limerick in Pennsylvania each had to reduce output due to intake water that was too warm. In fact, cooling water problems at US thermoelectric generators were widespread along the Mississippi River during the hot, dry summer of 1988.

And the problem is clearly growing. Two months ago, a study published in Nature Climate Change predicted continued warming and spreading drought conditions will significantly reduce thermoelectric output in coming decades:

Higher water temperatures and reduced river flows in Europe and the United States in recent years have resulted in reduced production, or temporary shutdown, of several thermoelectric power plants, resulting in increased electricity prices and raising concerns about future energy security in a changing climate.

. . . .

[The Nature Climate Change study] projects further disruption to supply, with a likely decrease in thermoelectric power generating capacity of between 6-19% in Europe and 4-16% in the United States for the period 2031-2060, due to lack of cooling-water. The likelihood of extreme (>90%) reductions in thermoelectric power generation will, on average, increase by a factor of three.

Compared to other water use sectors (e.g. industry, agriculture, domestic use), the thermoelectric power sector is one of the largest water users in the US (at 40%) and in Europe (43% of total surface water withdrawals). While much of this water is ‘recycled’ the power plants rely on consistent volumes of water, at a particular temperature, to prevent overheating of power plants. Reduced water availability and higher water temperatures – caused by increasing ambient air temperatures associated with climate change – are therefore significant issues for electricity supply.

That study is of course considering all thermoelectric sources, not just nuclear, but the decrease in efficiency applies across the board. And, when it comes to nuclear power, as global temperatures continue to rise and water levels in rivers and lakes continue to drop, an even more disconcerting threat emerges.

When a coal plant is forced to shut down because of a lack of cool intake water, it can, in short order, basically get turned off. With no coal burning, the cooling needs of the facility quickly downgrade to zero.

A nuclear reactor, however, is never really “off.”

When a boiling water reactor or pressurized water reactor (BWR and PWR respectively, the two types that make up the total of the US commercial reactor fleet) is “shutdown” (be it in an orderly fashion or an abrupt “scram”), control rods are inserted amongst the fuel rods inside the reactor. The control rods absorb free neutrons, decreasing the number of heavy atoms getting hit and split in the fuel rods. It is that split, that fission, that provides the energy that heats the water in the reactor and produces the steam that drives the electricity-generating turbines. Generally, the more collisions, the more heat generated. An increase in heat means more steam to spin a turbine; fewer reactions means less heat, less steam and less electrical output. But it doesn’t mean no heat.

The water that drives the turbines also cools the fuel rods. It needs to circulate and somehow get cooled down when it is away from the reactor core. Even with control rods inserted, there are still reactions generating heat, and that heat needs to be extracted from the reactor or all kinds of trouble ensues–from too-high pressure breaching containment to melting the cladding on fuel rods, fires, and hydrogen explosions. This is why the term LOCA–a loss of coolant accident–is a scary one to nuclear watchdogs (and, theoretically, to nuclear regulators, too).

So, even when they are not producing electricity, nuclear reactors still need cooling. They still need a power source to make that cooling happen, and they still need a coolant, which, all across the United States and most of the rest of the world, means water.

Water that is increasingly growing too warm or too scarce. . . at least in the summer. . . you know, when it’s hot. . . and demand for electricity increases.

In fact, Braidwood is not the only US plant that has encountered problems this sultry season:

[A] spokeswoman for the Midwest Independent System Operator, which operates the regional grid, said that another plant had shut down because its water intake pipes were now above the water level of the body from which it draws its cooling water. Another is “partially curtailed.”

That spokeswoman can’t, it seems, tell us which plants she is talking about because that information “is considered competitive.” (Good to know that the Midwest Independent System Operator has its priorities straight. . . . Hey, that sounds like a hint! Anyone in the Midwest notice a nearby power plant curtailing operations?)

So, not isolated. . . and also not a surprise–not to the Nature Climate Change people this year, and not to the industry, itself. . . 17 years ago. The Electric Power Research Institute (EPRI), a non-profit group of scientists and engineers funded by the good folks who generate electricity (a group that has a noticeable overlap with the folks that own nuclear plants), released a study in 1995 that specifically warned of the threat a warming climate posed to electrical generation. The EPRI study predicted that rising levels of atmospheric carbon dioxide would make power production less efficient and more expensive, while at the same time increasing demand.

And climate predictions have only grown more dire since then.

Add to that mix one more complicating factor: when the intake water is warmer, the water expelled by the plant is warmer, too. And there are environmental protections in many areas that limit how hot that “waste” water can be. There have been instances in the past where thermoelectric plants have had to curtail production because their exhaust water exceeded allowable temperatures.

And yet, despite a myriad of potential problems and two decades of climate warnings, it is sobering to note that none of the US reactors were built to account for any of this. . . because all American nuclear reactors predate these revelations. That is not to say nuclear operators haven’t had 20 years (give or take) to plan for these exigencies, but it is to say that, by-and-large, they haven’t. (Beyond, that is, as described above, simply lobbying for higher water temperature limits. That’s a behavior all too recognizable when it comes to nuclear operators and regulators–when nuclear plants can’t meet requirements, don’t upgrade the procedures or equipment, just “upgrade” the requirements.)

But, rather than using all this knowledge to motivate a transition away from nuclear power, rather than using the time to begin decommissioning these dinosaurs, nuclear operators have instead pushed for license extensions–an additional 20 years beyond the original 40-year design. And, to date, the Nuclear Regulatory Commission has yet to reject a single extension request.

And now the nuclear industry–with the full faith and credit of the federal government–is looking to double down on this self-imposed ignorance. The “Advanced Passive” AP1000 reactors approved earlier this year for Georgia’s Plant Vogtle (and on track for South Carolina, too) may be called “advanced,” but they are still PWRs and they still require a large reserve of cool, circulating water to keep them operating and nominally safe.

The government is offering $8.3 billion of financing for the Georgia reactors at rock-bottom rates, and with very little cash up front from the plant owners. There have already been numerous concerns about the safety of the AP1000 design and the economic viability of the venture; factor in the impact of climate change, and the new Vogtle reactors are pretty much the definition of “boondoggle”–a wasteful, pointless project that gives the appearance of value while in reality delivering none. It is practically designed to fail, leaving the government (read: taxpayers and ratepayers) holding the bag.

But as a too-darn-hot July ends, that’s the woo being pitched by the nuclear industry and its government sweethearts. Rather than invest the money in technologies that actually thrive during the long, hot days of summer, rather than invest in improved efficiency and conservation programs that would both create jobs and decrease electrical demand (and carbon emissions), rather than seizing the moment, making, as it were, hay while the sun shines, it seems the US will choose to bury its head in the sand and call it shade.

Nuclear power was already understood to be dirty, dangerous and absurdly expensive, even without the pressures of climate change. Far from being the answer to growing greenhouse gas emissions, the lifecycle of nuclear power–from mining and milling to transport and disposal–has turned out to be a significant contributor to the problem. And now, the global weirding brought on by that problem has made nuclear even more precarious–more perilous and more pricy–and so an even more pernicious bet.

According to the Kinsey Report, every average man you know would prefer to play his favorite sport when the temperature is low. But when the thermometer goes way up and the weather is sizzling hot, a gob for his squab, a marine for his beauty queen, a GI for his cutie-pie–and now it turns out–the hour for nuclear power is not.

‘Cause it’s too darn hot.
It’s too. Darn. Hot.

The Party Line – September 30, 2011: No Will, No Way: Nuclear Problems Persist, But US Fails to Seize Fukushima Moment

As September drew to a close, residents of southwest Michigan found themselves taking in a little extra tritium, thanks to their daily habit of breathing (h/t emptywheel). The tritium was courtesy of the 40-year-old Palisades Nuclear Generating Station in Covert Township, which suffered its third “event” (as they are politely called) in less than two months, and was forced to vent an indeterminate amount of radioactive steam.

The reactor at Palisades was forced to scram after an accident caused an electrical arc in a transformer in the DC system that powers “indications and controls“–also known as monitoring devices, meters and safety valves. (Transformer arcs seem to be “in” this season–it was a transformer arc that caused the Calvert Cliffs plant in Maryland to scram during Hurricane Irene.)

While it is nice to see rectors shut themselves down when a vital system goes offline, remember that “turning off” a fission reactor is not like flicking a light switch. Shutting down a reactor is a process, and the faster it is done, the more strain it puts on the reactor and its safety and cooling systems. And even after fission is mitigated, a reactor core generates heat that requires a fully functional cooling system.

Which is kind of an interesting point when considering that Palisades had just been restarted after completing repairs to a breach in the cooling system that was reported to be leaking more than 10 gallons per minute. Prior to that, a “special inspection” was ordered August 9 after a pipe coupling in the plant’s cooling system failed.

(By the way, have no fear, Michiganders, a public affairs representative for the Nuclear Regulatory Commission reassured the public that the concentration of tritium was “far below regulatory releases,” and that “as soon as it goes out, it gets diluted further.” You know, in the air. . . that you breathe.)

News of the Palisades tritium burp came at roughly the same time as a breathless (if a press release can be breathless) announcement from Dominion Resources, the folks responsible for the North Anna nuclear plant, the facility that scrammed after being shaken beyond design specifications by the earthquake centered in nearby Mineral, Virginia:

Our investigation showed the units tripped before the loss of off-site power when multiple reactor sensors detected a slight power reduction in the reactors. . . .

The root cause team determined that this occurred as result of vibration in the reactor or the monitoring devices in the reactors, or both.

Again, good that the reactors scrammed when something registered the quake, but noteworthy again because it was previously believed that the automatic shutdown started as a result of a loss of power–power required to operate the cooling systems, not only for the reactors, but for the spent fuel pools, as well.

While North Anna remains offline as the NRC continues its inspection (and tries to decide what would constitute passing that inspection), and Palisades is also down pending an (another) investigation, both serve as only the latest in a long string of examples in what could be called The Light Water Paradox: In order to safely generate a steady stream of electricity, a light water reactor needs a steady stream of electricity.

This is not just a perpetual motion machine laugh line. This inherent flaw in the design of LWRs is at the root of two other prominent tales of nuclear safety (or lack thereof).

The first, of course, is the ongoing, ever-metastasizing disaster in Japan, where failures in the cooling systems at Fukushima Daiichi following a massive earthquake and tsunami resulted in hydrogen explosions, core meltdowns, and, likely, melt-throughs that contaminated and continue to poison sizable portions of the country and surrounding sea.

The second story concerns the proposal for the construction of two new reactors at Plant Vogtle, a nuclear power facility near Augusta, Georgia.

The Vogtle reactors would be the first to be built in the US in a generation, and they have come under some additional scrutiny in part because they would be the first of a new-design LWR called the AP1000. A riff on previous Toshiba/Westinghouse pressurized water reactors, the AP1000’s most noticeable “innovations” are meant to address the active cooling paradox. First, it has emergency “dump tanks,” reservoirs of water situated above the reactor that could, in an emergency, empty into the reactor via gravity, providing up to 72 hours of “passive” cooling. Second, rather than housing the core in a reinforced concrete shell with a metal liner, the AP1000 would have an all-steel containment vessel which would, in theory, be able to expel heat through convection.

While these two design features both highlight and attempt to address a dangerous flaw that is a part of every other nuclear facility in the United States–that water has to be actively cycled through a reactor core to keep it from melting–the design still predates the Fukushima quake, and fails to truly incorporate the lessons of that disaster.

The massive March 11 earthquake shutdown power to the Fukushima Daiichi plant, and thus the cooling systems, and the tsunami that followed flooded the diesel-powered backup generators, but that was only part of the problem. Investigations now show that even if Fukushima had in some way managed to maintain power, the cooling system would still likely have failed for at least some (and likely all) of the reactors, and (and this is important) for the spent fuel pools, as well. That is because the quake not only caused a loss of power, it also caused numerous breaches in the cooling system. Cracks in the containment vessel, broken pipes, and dislodged couplings would have likely resulted in a calamitous drop in water levels, even with full power. Less than successful attempts to restore the cooling systems with new, external power sources, and the large amounts of contaminated water that continue to pour from the plant, have demonstrated just how severely the physical infrastructure was damaged.

There are additional concerns about the design of the AP1000 (possible corrosion of the all-metal containment vessel and less than rigorous computer modeling of seismic tolerances, for instance), but, in a post-Fukushima world, simply addressing the active/passive cooling problem (and only doing so for the reactor and not the spent fuel pools) does not promise a safe nuclear facility.

And there is, perhaps, a hint that at least one of the members of the NRC understands this:

The chairman of the U.S. Nuclear Regulatory Commission says the agency may need to incorporate its findings about a nuclear disaster in Japan into a license to build a new nuclear plant in Georgia.

NRC Chairman Gregory Jaczko said Wednesday [September 28] he believes the license to build two more reactors at Plant Vogtle near Augusta should include conditions that reflect the findings of a review of this year’s disaster at the Fukushima Dai-ichi plant.

While it is true that “may” and “should” are not “will” and “must,” and it is also the case that the Fukushima taskforce recommendations themselves do not fully address the problem outlined here, Chairman Jaczko’s comments do make the point that there are indeed lessons to be learned from the Japanese crisis, and right now, in the US, that education has not taken place.

The chairman and his fellow commissioners have wrestled all summer with the pace of post-Fukushima reform. Jaczko has argued for what in NRC terms is considered a speedy consideration of the new safety regime, but a majority of the panel has managed to slow the process down to a point where no new regulations will likely be in place by the time the NRC is required to rule on the Vogtle permits.

But, because the Vogtle hearings have revealed the Chairman’s understanding of at least some of the problems, it also reveals an obvious path for Jaczko and those (such as Senator Barbara Boxer (D-CA)) who would also want any new construction or operating permits to only be approved under guidelines drafted in response to the Fukushima disaster. If the industry–and the commissioners most friendly to it–wants to move quickly ahead on new construction and the relicensing of 40-year-old plants, then it should be required that they move quickly on adopting the Fukushima taskforce recommendations. No new safety rules, no new permits–the political calculus should be that simple.

And, if the NRC won’t do the political math, then it should be up to elected government to run the financial numbers.

Building the new Vogtle reactors is projected to cost $14.8 billion. That’s projected–the existing Vogtle plant went over budget by a factor of 14. But even if the new reactors stay on budget, there is still no way they would get built without help from the Federal Government. To that end, the Obama administration okayed an $8.33 billion loan guarantee for The Southern Company, owners of Plant Vogtle, contingent on the NRC’s approval of the plans. (By way of comparison, that is 16 times the size of the loan given to the now-defunct solar technology company Solyndra.) While there are a myriad of reasons why that and other such guarantees should never be proffered, at minimum, the federal government should now freeze the financial backing for new construction until the NRC passes–and industry adopts–an enhanced safety regime.

This wouldn’t be a one-shot power play. Hot on the heals of Vogtle, the V.C. Summer nuclear facility in South Carolina is also looking to add two new AP1000 reactors, and its permit process is also underway. And financial markets understand what a bad bet that project is, too. Summer is also owned by Southern, but it is operated by SCANA. Moody’s, the bond-rating agency, just downgraded SCANA’s debt to one notch above “junk” status, citing the cost of the proposed new reactors.

Meanwhile, the Commonwealth of Virginia has handed over $7 million in precious state funds to North Carolina’s Babcock & Wilcox to open a prototype of a small modular reactor (SMR) in the town of Forest, near Lynchburg. The SMR is small, indeed–160 megawatts (in contrast to the 1,800 megawatt capability of Virginia’s North Anna plant)–and it’s built entirely underground, supposedly enhancing its safety when faced with a potential terrorist attack. How it will provide greater protection from an earthquake or flood seems (at best) less obvious.

Yet, with all of this action, all of these new designs, all of this lobbying, and all of this (as “serious” people repeatedly caution) scarce government money, still no one is addressing another part of the nuclear equation: spent fuel. With Yucca Mountain now (supposedly) abandoned, the United States has no long-term plan for handling the already large and ever-growing problem of dangerous spent nuclear fuel. Right now, each nuclear facility stores its used fuel in either pools, dry casks, or both. The spent fuel pools require an active cooling system, which faces most of the same problems inherent in reactor cooling. Dry casks–used for fuel that is cool enough to remove from the pools–are considered safer, but they are far from “safe.” They are above ground, emit some radiation, and are theoretically vulnerable to terrorist attack (and the casks at North Anna moved and sustained “cosmetic” cracks in the August earthquake). In many US plants, both pools and casks are already filled to capacity. Expanding the number of nuclear reactors only accelerates the storage crisis.

And it must be reiterated, all of this activity comes a mere six months after the start of the Fukushima disaster. The latest announcement from the Japanese government–that they will relax the evacuation order for more than 100,000 residents even though their towns have not yet been decontaminated–says nothing about an easing of the emergency, and everything about a government that frankly just doesn’t know what else to do. The United States, though obviously larger, has reactors near enough to densely populated areas that a nuclear accident would make Japan’s evacuation problem seem like a rush hour fender bender. And the US government’s plan to deal with a nuclear disaster is no more impressive than Japan’s.

The saddest part, of course, is that it needn’t be that way. Beyond the political and financial tools proposed above, the NRC actually already has the power to demand the nuclear industry own up to the new seismic reality. When Westinghouse Electric came before the commission in May, it was ordered to fix its seismic calculations. Though Westinghouse grumbled, it did not question the NRC’s authority to rule on seismic concerns.

David Lochbaum, director of the Nuclear Safety Project at the Union of Concerned Scientists, agrees that the NRC has all the authority it needs:

Nuclear regulators already have “sufficient information and knowledge” to deal with earthquake risks at existing U.S. reactors and don’t need to wait for a broader review, a safety advocate said.

The Nuclear Regulatory Commission developed seismic rules for new plants in 1996 and has since approved preliminary construction for proposed nuclear units at a Southern Co. plant in Georgia and certified an early reactor design by Toshiba Corp.’s Westinghouse Electric unit, according to comments filed with the agency today by David Lochbaum. . . .

“If the NRC truly lacks sufficient information about seismic hazards and how safety at nuclear power reactors is affected, then the agency cannot responsibly have issued early site permits and certified new reactor designs,” he said.

Of course, having the authority and exercising it are not the same thing, but just as the NRC is not truly handcuffed by the fight over the Fukushima taskforce recommendations, the entire country need not be shackled to such a flawed, dangerous and expensive energy source as nuclear. The US government has demonstrated that it has the authority to make decisions on energy sources, and it has shown that it actually has the money to invest–big money. Of course, be it the NRC, Congress or President Obama, when it comes to moving beyond nuclear to demonstrably safer and truly renewable sources, what the US has not shown is the will.

– – –

Correction: Last week’s post included the wrong location for the Seabrook nuclear plant; Seabrook is in New Hampshire. Apologies and thanks to the readers that spotted the error.