End-of-Summer News Puts Nuclear Renaissance on Permanent Vacation

Calvert Cliffs Nuclear Power Plant, Units 1 & 2, near Lusby Maryland. (photo: NRCgov)

The Nuclear Regulatory Commission cannot issue a license for the construction and operation of a new nuclear reactor in Maryland–that is the ruling of the NRC’s Atomic Safety and Licensing Board (ASLB) handed down Thursday.

In their decision, the ASLB agreed with intervenors that the Calvert Cliffs 3 reactor project planned for the shores of Chesapeake Bay violated the Atomic Energy Act’s prohibition against “foreign ownership, control, or domination.” UniStar, the parent company for the proposal, is wholly owned by French energy giant Électricité de France (EDF).

EDF had originally partnered with Constellation Energy, the operator of two existing Calvert Cliffs reactors, but Constellation pulled out of the project in 2010. At the time, Constellation balked at government requirements that Constellation put $880 million down on a federal loan guarantee of $7.6 billion (about 12 percent). Constellation wanted to risk no more than one or two percent of their own capital, terms the feds were then willing to meet if Constellation and EDF could guarantee the plant’s completion. Constellation also found that requirement too onerous.

Constellation has since been purchased by Exelon.

The ASLB decision technically gives EDF 60 days to find a new American partner, but given the history and the current state of the energy market, new suitors seem highly unlikely. It marks only the second time a license has been denied by the ASLB. (The first, for the Byron, Illinois plant in 1984 was overturned on appeal. Byron opened the next year, and Illinois’s groundwater has never been the same.) The NRC also declined to grant a license to the South Texas Project late last year when US-based NRG Energy (corporate ID courtesy of the Department of Redundancy Department) pulled out of the project, leaving Japanese-owned Toshiba as the only stakeholder.

The Calvert Cliffs intervenors were led by the Nuclear Information and Resource Service (NIRS), which has been fighting Calvert Cliffs 3 almost since its inception. NIRS was joined by Beyond Nuclear, Public Citizen and Southern Maryland CARES.

Michael Mariotte, Executive director of NIRS, called Thursday’s decision “a blow to the so-called ‘nuclear renaissance,'” noting that back in 2007, when permit requests were submitted for Calvert Cliffs 3, the project was considered the “flagship” of a coming fleet of new reactors. “Now,” said Mariotte, “it is a symbol for the deservedly failed revival of nuclear power in the US.”

A symbol, yes, but far from the only symbol.

Earlier in the week, Exelon notified the Nuclear Regulatory Commission that it would withdraw its application for an “early site permit” for a proposed nuclear facility near Victoria, Texas. A combined construction and operating license was originally sought for two reactors back in 2008, but by 2010, with demand down and nuclear costs continuing to skyrocket, Exelon backed off that request, essentially downgrading it to “just keeping a toe in the water” status.

Now, with the price of a new nuke plant climbing higher still–even though the economy remains sluggish–and with natural gas prices continuing to fall, that toe has been toweled dry. “Today’s withdrawal brings an end to all project activity,” said an Exelon statement issued Tuesday.

And on Monday, the operators of the troubled San Onofre Nuclear Generating Station let it be known that they would start removing the radioactive fuel from Unit 3 sometime in September. Unit 3 has been offline since it scrammed after a heat exchange tube leaked radioactive steam at the end of January. Later inspection revealed that numerous tubes on the unit, as well as on its previously shut-down twin, showed alarming and dangerous amounts of wear.

Removing the fuel rods all-but-confirms what most experts already knew: SONGS 3 will never come back online. Southern California Edison, the plant’s majority operator, might not want to admit that, but earlier in August, SCE announced plans for 730 layoffs, roughly a third of the plant’s workforce. That size of reduction makes repairing, testing and restarting both San Onofre reactors unfeasible. Or, to look at it through the other end of the telescope, as David Lochbaum, director of the Union of Concerned Scientists put it, “reducing the scope of required work at the jobsite is a good thing to do before discharging workers.”

Mothballing Unit 3 will reduce the workload, but with the entire facility offline for most of this year, SONGS is already an economic sinkhole. Strangely, despite failing to generate a single kilowatt of energy in eight months, SCE and co-owner San Diego Gas & Electric have continued to collect $54 million of revenue every month from California ratepayers.

The California Public Utilities Commission has to investigate rate cuts when a plant fails to deliver for nine months (so, officially, November and December, for the two SONGS reactors), but that process would start sooner if it were determined that a reactor would never come back into service. Neither San Onofre reactor will restart before the end of the year, and it is now clearer than a San Diego summer sky that the number 3 reactor never will. Scientists know this, engineers know this, utilities commissioners know this, and even Southern California Edison knows this–but SCE won’t say it because that would hasten the start of rate rollbacks.

Calvert Cliffs being in the news this time of year also calls to mind how well nuclear plants do in hurricanes. . . as in, not very well at all. Last year, as Hurricane Irene marched up the Atlantic coast, the two existing reactors at Calvert Cliffs had to scram when a dislodged piece of siding caused a short in the main transformer and an “unanticipated explosion within the Protected Area resulting in visible damage to permanent structures or equipment.”

As fate would have it, this year’s “I” storm, Isaac, necessitated the shutdown of Entergy’s Waterford plant, outside of New Orleans. In fact, many plants are required to shutdown when facing winds in excess of 74 mph, “rendering them,” as Beyond Nuclear put it, “a liability, rather than an asset during a natural disaster.”

And Hurricane Isaac was but one possible symptom of a warming climate that has proven problematic for nuclear plants this summer. Braidwood, Illinois and Millstone in Connecticut had to curtail output or temporarily shutdown this summer because the source water used for cooling the reactors rose above prescribed limits. With summer temperatures expected to climb even more in coming years–and with droughts also anticipated–incidents like these (and like those at Hope Creek, New Jersey, and Limerick, Pennsylvania, in 2010) will become more frequent, leaving nuclear power less able to deliver electricity during the months when it is most in demand.

Of course, the summer of 2012 has also had its share of what might be called “classic” nuclear plant problems–power supply failures, radioactive leaks, and other so-called “unusual incidents.” One of the most recent, yet another accident at Palisades in Michigan:

On Sunday [August 12], Palisades shut down due to a leak of radioactive and acidic primary coolant, escaping from safety-critical control rod drive mechanisms attached to its degraded lid, atop its “worst embrittled reactor pressure vessel in the U.S.”

And all of the above has happened during a summer when the NRC finally acknowledged (or, more accurately, when a federal court ordered the NRC to acknowledge) that it could no longer pretend the US had a solution for its nuclear waste storage crisis. The commission has stopped issuing new operating licenses, license extensions and construction licenses until it can craft a plan for dealing with the mountains of spent nuclear fuel continuing to accumulate at nuclear facilities across the country.

So, there is no nuclear renaissance. There wasn’t one before this summer–there wasn’t even one before everyone came to know about the Fukushima disaster. The dangers and costs that have followed nuclear power since its inception have firmly branded it as a technology of the past. The events of 2011 and 2012 have provided more evidence that nuclear power is done as a meaningful energy proposition. The sooner America can also be done with the myth of a possible, sometime, “who knows when,” “maybe next year” nuclear renaissance, the sooner the federal government can stop propping up the unsafe and unviable nuclear industry. And the sooner the US can begin a real technological and economic rebirth.

NRC Halts License Approvals Pending New Guidelines on Nuclear Waste

A nuclear spent fuel pool. (photo: NRCgov)

The US Nuclear Regulatory Commission announced Tuesday it would suspend the issuing of new reactor operating licenses, license renewals and construction licenses until the agency crafted a plan for dealing with the nation’s growing spent nuclear fuel crisis. The action comes in response to a June ruling by the US Court of Appeals that found the NRC’s “Waste Confidence Decision”–the methodology used to evaluate the dangers of nuclear waste storage–was wholly inadequate and posed a danger to public health and the environment.

Prior to the court’s ruling, the Commission had evaluated licensing and relicensing with the assumption that spent fuel–currently stored on site at nuclear power plants in pools and dry casks–would soon be moved to a central long-term waste repository. As previously noted, that option was once thought to be Yucca Mountain, but after years of preliminary work and tens of millions of dollars wasted, Yucca was found to be a poor choice, and the Obama Department of Energy and the NRC ended the project. The confirmation of new NRC Chair Allison Macfarlane–considered a nuclear waste expert and on record as a Yucca Mountain critic–focused even more attention on the country’s lack of realistic plans for safe, permanent waste storage.

The release from the Nuclear Regulatory Commission [PDF] put it this way:

Waste confidence undergirds certain agency licensing decisions, in particular new reactor licensing and reactor license renewal.

Because of the recent court ruling striking down our current waste confidence provisions, we are now considering all available options for resolving the waste confidence issue, which could include generic or site-specific NRC actions, or some combination of both. We have not yet determined a course of action.

In recognition of our duties under the law, we will not issue licenses dependent upon the Waste Confidence Decision or the Temporary Storage Rule until the court’s remand is appropriately addressed.

What this means in real terms remains to be seen. No licenses or renewals were thought imminent. Next up were likely a decision on extending the life of Indian Point, a short drive north of New York City, and a Construction and Operation License for Florida’s Levy County project, but neither was expected before sometime next year. Officially, 19 final reactor decisions are now on hold, though the NRC stressed that “all licensing reviews and proceedings should continue to move forward.”

Still, this should be read as a victory for the originators of the suit that resulted in the June ruling–the Attorneys General of Connecticut, New Jersey, New York and Vermont in coordination with the Prairie Island Indian Community of Minnesota and environmental groups represented by the National Resources Defense Council–and most certainly for the millions of Americans that live close to nuclear plants and their large, overstuffed, under-regulated pools of dangerous nuclear waste. Complainants not only won the freeze on licensing, the NRC guaranteed that any new generic waste rule would be open to public comment and environmental assessment or environmental impact studies, and that site-specific cases would be subject to a minimum 60-day consideration period.

While there is still plenty of gray area in that guarantee, the NRC has (under pressure) made the process more transparent than most similar dealings at the agency. The commission has also, at least for the moment, formally acknowledged that the nation’s nuclear reactor fleet faces a very pressing problem.

The US has 72,000 tons of radioactive waste and generates an additional 2,000 tons every year. Spent fuel pools at individual sites are already so full they pose numerous threats, some eerily similar to the ongoing disaster at Fukushima. Dry cask storage poses other problems and much additional expense. And regional interim waste storage facilities, an idea possibly favored by Macfarlane, is problematic for many reasons, not the least of which is that no sites have yet been designated or built.

But nuclear plant operators, already burdened by the spiraling costs of a poorly maintained and aging inventory, are desperate to have the federal government take the waste problem off their backs–and off their books. Whether that is even technically feasible, let alone politically of fiscally possible, remains to be seen. But the NRC has at least recognized–or at least been forced to recognize–that the nuclear industry should not be allowed to create waste indefinitely without a plan to safely secure what is already on hand.

Court Says Regulators Must Evaluate Dangers of Nuclear Waste

A nuclear spent fuel pool. (photo: NRCgov)

The Nuclear Regulatory Commission acted improperly when it failed to consider all the risks of storing spent radioactive fuel onsite at the nation’s nuclear power facilities, so ruled a federal court on Friday.

In a unanimous ruling (PDF), a three-judge panel of the US court of appeals for the District of Columbia found that the NRC’s “Nuclear Waste Confidence Decision”–the methodology used for evaluating the dangers of long-term waste storage–was woefully inadequate:

[The Nuclear Regulatory Commission] apparently has no long-term plan other than hoping for a geologic repository. . . . If the government continues to fail in its quest to establish one, then SNF (spent nuclear fuel) will seemingly be stored on site at nuclear plants on a permanent basis. The Commission can and must assess the potential environmental effects of such a failure.

Writing for the court, Judge David Sentelle made no bones about the shortcomings of the NRC’s magical, one-size-fits-all method of assuming a future solution for the nuclear waste storage crisis. Spent fuel “poses a dangerous long-term health and environmental risk,” he said.

The suit was brought by the attorneys general of Connecticut, New Jersey, New York, and Vermont, in coordination with the Prairie Island Indian Community of Minnesota and environmental groups represented by the National Resources Defense Council.

The decision harshly criticized regulators for evaluating plant relicensing with the assumption that spent nuclear fuel–currently stored onsite in pools and dry casks–would be moved to a central long-term waste repository. As discussed here before, the only option seriously explored in the US was the Yucca Mountain site in Nevada. After years of preliminary construction and tens of millions of dollars of dollars spent, Yucca was determined to be a bad choice for the waste, and the Obama administration’s Department of Energy and the NRC halted the project.

Despite the wishful reporting of some nuclear advocates, the Yucca repository is nowhere near ready, and even if it were an active option, the facility would be many years and maybe as much as $100 million away from completion. Still, the nuclear industry and its acolytes have challenged the administration to spend any remaining money in a desperate attempt to keep alive the fantasy of a solution to their waste crisis.

Such zombified hopes, however, do not qualify as an actual plan, according to the courts.

The judges also chastised the NRC for its generic assessment of spent fuel pools, currently filled many times over capacity at nuclear plants across the United States. Rather than examine each facility and the potential risks specific to its particular storage situation, the NRC had only evaluated the safety risks of onsite storage by looking at a composite of past events. The court ruled that the NRC must appraise each plant individually and account for potential future dangers. Those dangers include leaks, loss of coolant, and failures in the cooling systems, any of which might result in contamination of surrounding areas, overheating and melting of stored rods, and the potential of burning radioactive fuel–risks heightened by the large amounts of fuel in the storage pools and underscored by the ongoing disaster at Japan’s Fukushima Daiichi plant.

The decision has immediate ramifications for plants in the northeast seeking license extensions–most notably Entergy’s Indian Point facility, less than an hour’s drive from New York City, and their Vermont Yankee plant, which is operating despite seeing its original license expire in March.

New York’s Attorney General Eric Schneiderman released a statement, which reads, in part:

This is a landmark victory for New Yorkers, and people across the country living in the shadows of nuclear power plants. We fought back against the Nuclear Regulatory Commission’s rubber stamp decision to allow radioactive waste at our nation’s nuclear power plants to be stored for decades after they’re shut down – and we won. The Court was clear in agreeing with my office that this type of NRC ‘business as usual’ is simply unacceptable. The NRC cannot turn its back on federal law and ignore its obligation to thoroughly review the environmental, public health, and safety risks related to the creation of long-term nuclear waste storage sites within our communities.

And William Sorrell, Vermont’s AG, concurred:

This outcome illustrates how important it is for states to work together on environmental matters of national importance. Today’s decision is a major victory for New York, Vermont, and all other states that host nuclear power plants. The court confirmed what Vermont and other states have said for many years now—that the NRC has a duty to inform the public about the environmental effects of long-term storage of spent nuclear fuel, particularly when it is occurring at nuclear power plants that were never designed to be long-term storage facilities.

Indeed, plants were not designed nor built to house nuclear waste long-term. The design life of most reactors in the US was originally 40 years. Discussions of the spent fuel pools usually gave them a 60-year lifespan. That limit seemed to double almost magically as nuclear operators fought to postpone the expense of moving cooler fuel to dry casks and of the final decommissioning of retired reactors.

But, as reported here last fall, outgoing NRC chief Gregory Jaczko was exploring the possibility of using onsite storage for 200 to 300 years. How these metrics will change when the new head regulator, Allison Macfarlane, is confirmed is not yet known–but Macfarlane is on record as both a Yucca skeptic and an advocate for regional interim waste storage facilities. That plan, however, has many critics, as well, can only take fuel already cool enough to be removed from pools, and, of course, has not been so much as sited or designed, let alone constructed.

While no nuclear plants will close today as a result of this decision, it should also be noted–because some reports assume otherwise–that this finding does not mean Yucca Mountain must open, either. The ruling does, however, underscore the waste crisis–and it is a crisis–faced by the US nuclear industry. No only is it generating approximately 2000 tons of new waste every year that will need an eternal resting place, pools at some plants are so full it actually complicates refueling and maintenance (since fuel needs to removed from reactors and kept cool for both procedures). Plant operators are desperate to have the federal government take on the costs and the risks of waste storage.

But without anything even close to a plan for a long-term repository, the Nuclear Regulatory Commission cannot assume a solution, says the court. Instead, it must look at reality–something the entire country would best be advised to do when evaluating the future of this dirty, dangerous and expensive energy source.

The Party Line – September 2, 2011: Earthquakes, Hurricane Highlight Serious Flaws with Nuclear Power and its Regulation

On Friday, August 26, as Hurricane Irene began its slow journey up the US central Atlantic coast, power companies operating 20 nuclear reactors in nine states made plans to deal with the storm and its potential aftermath.

North Carolina’s Brunswick reactors, operated by Progress Energy, were powered down to 70 percent of peak capacity. At New Jersey’s Oyster Creek, near Barnegat Bay, plant operator Exelon chose to shutdown its reactor completely. Dominion Resources, owner of New London, Connecticut’s Millstone plant took one reactor down to 70 percent, the other to 50 percent.

Dominion’s Surry plant in Virginia stayed at full power, as did Entergy’s Indian Point, 35 miles north of New York City, and the Pilgrim plant in Massachusetts.

The reason some plants chose to reduce output or go offline was because, if an accident caused or required the plant to scram–that is, quickly and completely shut down–the stress on the reactor increases the chance of a future safety breach. As Bob Alvarez, of the Institute for Policy Studies, explains:

Keep in mind that when these large reactors scram, it’s like a jumbo jet making a quick forced landing. The sudden insertion of control rods creates unexpected stress on the reactor. This is why when a reactor is normally shut-down for refueling, it is done gradually. If a reactor experiences several scrams during a year, this should raise a red nuclear safety flag.

While working in DOE, I was involved in energy emergency planning, and electricity blackouts, NRC staff were definitely concerned about the safety of increased scrams caused by forced power outages.

By reducing output, a reactor comes under less stress during a rapid shutdown. It is like hitting the brakes at 35 mph as opposed to slamming them on at 60 mph. The stop is faster and results in less wear-and-tear on the vehicle.

One plant that decided not to reduce output was Constellation Energy Group’s Calvert Cliffs facility near Lusby, Maryland. That was probably a mistake:

A nuclear power reactor automatically went offline late Saturday in Calvert Cliffs after its main transformer was hit by a piece of aluminum siding that Hurricane Irene had peeled off a building. . . .

A follow-up NRC Daily Event Report filed on August 29 by Constellation Energy to the NRC identified that the wind blown debris crashed into an electrical transformer at the Calvert Cliffs nuclear station causing an electrical short and “An unanticipated explosion within the Protected Area resulting in visible damage to permanent structures or equipment.”

To be clear, automatically going offline is a scram.

That is bad news for CEG, which has to keep the reactor offline pending a full inspection by the Nuclear Regulatory Commission, but it might have actually been good news for the surrounding communities. As it turns out, the transformer explosion was not the only problem encountered at Calvert Cliffs during Irene’s visit. As the NRC’s August 29 Daily Event Report [PDF] states:

At 2400, 8/27/2011, numerous alarms on the 1A DG [Diesel Generator] started to be received. These were investigated and it was found that water was intruding down the DG exhaust piping resulting in a DC ground. Based on these indications the 1A DG was declared inoperable and appropriate technical specifications implemented.

In other words, the backup power generator would not have worked if the Calvert Cliffs reactor had lost its main power source. As previously observed, nuclear plants require a steady stream of electric power to operate safely, as cooling systems and monitoring devices depend on it.

It was also noted in the NRC event report that Hurricane Irene “disabled public notification sirens in two counties in the reactor’s emergency planning zone.” They lost power, and CEG had not provided any battery back-up system. So, if an accident severe enough to require precautions or evacuation took place that night, large numbers of people would have been left in the dark, as it were. As the editors of Beyond Nuclear put it, “So much for defense in depth.”

And so much for oversight, it seems. The problems at Calvert Cliffs are not really a revelation–at least not to the NRC:

Calvert Cliffs nuclear power plant in Southern Maryland is due for closer scrutiny by federal regulators after unspecified security lapses discovered there earlier this year.

The Nuclear Regulatory Commission has finalized a “greater than green” finding of security deficiencies spotted during a special inspection from January to July of this year, according to a letter released Wednesday. The agency has not disclosed the nature of the problems, saying that releasing such information might help someone to attack or sabotage the twin-reactor plant in Lusby in Calvert County.

That is the sum total of an item in the August 31 Baltimore Sun. Curious civilians with an abundance of time can access some of the reports through the NRC’s Calvert Cliffs page, but there is no digest for lay readers.

And even the untrained eye might take issue in light of recent developments. For instance, a May report [PDF] on an inspection instigated in the aftermath of Japan’s Fukushima disaster gave a passing grade to backup equipment designed to kick-in if a so-called SBO, or Site Blackout, occurred. As observed, rainfall from Irene rendered a backup diesel generator inoperable.

The lingering safety questions, coupled with dual mishaps caused by high winds and heavy rain, appear not to have resulted in a dangerous event at Calvert Cliffs this time. However, it is just this kind of “what are the chances?” one-two punch that so exacerbated the crisis in Japan, and it is events like this that again should serve as an urgent wakeup call for regulators and legislators alike to quickly implement safety improvements to America’s nuclear facilities.

But step back, and an even larger systemic problem takes shape. Each private energy company made its own decisions on what to do with each of its reactors in the face of an approaching (and somewhat predictable) natural disaster. The call on whether to decrease output or shutdown reactors in advance was not the federal government’s call, not the NRC’s, and not the call of at-risk states or municipalities. There is no federal rule, and, apparently, no federal authority to direct plants on how to operate in cases of multi-region events such as a hurricane.

The NRC’s post-Fukushima-disaster task force did not specifically address this issue, but it did recommend a reexamination of the way the entirety of US nuclear power generation is regulated. The majority of NRC commissioners, however, found even that vague recommendation to be too urgent, and any consideration of this question is now at least 18 months away.

Meanwhile, at North Anna’s quake-damaged plant. . . .

On August 26, Dominion, the company that operates the reactors at Virginia’s North Anna plant, notified the NRC that the 5.8 magnitude Earthquake centered in Mineral, Virginia, might have caused more shaking than the facility was designed to withstand. (Some confusion has surrounded the seismic standard to which North Anna was built. The tolerances are often shorthanded to a Richter scale magnitude number, but, in fact, plant design is supposed to be evaluated against the amount of shaking a quake will cause. Shaking at one point depends on magnitude, but also on the distance from the epicenter and the depth of the quake, as well as other geological factors.) Full results of an examination of the “shake plates” (which measure ground motion) are supposed to be released later today (September 2).

What is already known, though, is that the shaking caused many of North Anna’s dry casks–a type of spent-fuel storage container–to move by as much as four inches. Twenty-five of the 27 vertical casks moved as a result of the quake. Each of those steel and concrete casks contains 32 spent fuel rods and weighs 115 tons. Newer horizontal casks did not move, but some of the 26 (13 already full of spent fuel) show what has been termed “cosmetic damage” to exterior concrete.

As discussed, but, as noted here, not addressed in the NRC task force report, dry cask storage is preferable to the spent fuel pools where “fresher” old fuel is stored at most US plants. Pools require a dependable electrical source to keep liquid circulating and completely covering stored fuel rods. An interruption of power or damage to the cooling system can cause dangerous conditions where the liquid overheats, boils away, and even “cracks” as a result of the nuclear reaction, which accelerates as the pools heat and disappear, and hydrogen explosions are possible, further damaging the vessels and sending radioactive material into the atmosphere.

Dry casks store fuel further removed from “active service,” and are cooled by naturally circulating air.

While the March quake and tsunami provoked the described dangerous events in Fukushima Daiichi’s spent fuel pools, there are no reports of any problems with any of Japan’s dry casks.

But the movement of and damage to North Anna’s casks, though minor, is not meaningless. Beyond the contrasts with liquid storage, the August event highlights the lack of a national repository for spent-but-still-highly-radioactive nuclear fuel. Fifty-five of the nation’s nuclear facilities currently have dry casks on site, but the United States has no centralized facility for the long-term storage. And, since the Obama administration declared Nevada’s partially built Yucca Mountain repository closed, the US has no current plan for the disposal of this dangerous material.

The NRC Fukushima task force acknowledges the need for a long-term plan, but there exist no specific recommendations and no process or funding for developing any.

And speaking of Fukushima. . . .

Al Jazeera has a disturbing report on radioactive waste from the ongoing nuclear disaster overwhelming sewage treatment facilities hundreds of miles from Fukushima.

In Japan, before March, processed sewage sludge was often shipped out for use by fertilizer and concrete manufacturers. But now, even far from the destroyed nuclear plant, the sewage is too dangerous for any use. As a result, piles of highly radioactive sludge are accumulating at sewage plants that have no capacity or expertise for handling the toxic material. Instead, containers and piles of sludge are just being lined up at the processing plants, out in the open, covered by simple plastic tarps. Workers are told they face no imminent danger, but Geiger counters say otherwise.

 

The Japanese government has no plan for dealing with this latest sinister wrinkle, saying only that it is not yet an urgent problem.

Such a lack of urgency is stunning and sad for a country and a people so directly in harm’s way, but a similar lackadaisical, industry-coddling attitude in the US should be no less troubling. True, nothing as terrible as Japan’s catastrophe has yet occurred at an American nuclear plant, but it is not beyond the realm of possibility, as almost every passing week or natural disaster seems to accentuate.

Theoretically, the United States has a body tasked with responding to these new probabilities–the Nuclear Regulatory Commission. And if the NRC won’t do its job, the US has a body with strict oversight powers–Congress. The Congress and the president also have the ability to demand from the nuclear industry improvements in safety and emergency preparedness in exchange for the federal subsidies and loan guarantees the industry needs to operate at all.

But if the Commission or the politicians cannot break free of their cozy relationships with–and the campaign donations from–private energy companies, then who or what, beyond nature, will hold the nuclear industry accountable?

The lifespan of a nuclear plant or a political career is short, but the half-life of many byproducts of nuclear power generation is long. In some cases, very, very long. Is any nation’s political system able to take that long a view?

The Party Line – August 26, 2011: Virginia Quake Yet Another Wakeup Call for Sleepy Nuclear Regulators (Plus: Japan’s PM Resigns)

Late Thursday, Sen. Dianne Feinstein (D-CA) made this observation over at The Huffington Post:

Uninterrupted electricity is essential for nuclear safety. Without electricity, nuclear power plants are unable to pump cooling water through reactor cores and spent fuel pools to prevent overheating and fuel melting.

Without power, plant operators cannot control reactor activity or remotely monitor spent fuel.

It was the loss of electrical power that led to the partial-meltdown of multiple reactors, significant radiation release and damage to the spent fuel pools at the Fukushima Daiichi plant in Japan after the devastating 9.0 earthquake and tsunami in March.

First, I can’t move on without noting two problems there in the last paragraph.

I don’t know how Feinstein defines it, but I think most of the world has dropped the “partial” from the assessment of the meltdowns at Japan’s Fukushima Daiichi nuclear facility. Maybe DiFi has some secret pictures that show tiny bits of intact cladding floating on top of the blobs of corium now understood to be at the bottom of at least some of the damaged reactors, and so she feels uncomfortable going all the way, but the company that nominally runs the facility and the country that is unlucky enough to serve as its home feel sure enough to call it a meltdown without the modifier, so I think US Senators should, too.

Also, it is now believed that a meltdown in at least one of the reactors started before the tsunami that followed Japan’s March 11 earthquake. In other words, as I reported previously, the earthquake damaged the containment vessel or, more likely, the cooling system before the massive wave knocked out the backup generators and, thus, power to the cooling system. So, the loss of power did not lead to at least some of the meltdown—earthquake damage did.

That is not just an academic nitpick, it goes directly to how Feinstein and the entire US regulatory structure should evaluate the safety of domestic nuclear power plants.

Second: “Uninterrupted electricity is essential for nuclear safety.” Just think about that for a second. Uninterrupted electricity is essential for the safe generation of electricity. It is a logic that seems as vulnerable to reason as nuclear cooling systems are to seismic and tidal events.

But third, I do want to congratulate Senator Feinstein for recognizing and writing the obvious:

The incident [Tuesday’s magnitude 5.8 quake centered in Virginia] was a stark reminder of how vulnerable America’s nuclear power plants are to natural disasters.

I mean that congratulations sincerely. Yes, we didn’t really need a new reminder—Japan’s Fukushima disaster is recent and ongoing—but the Mineral, VA earthquake was another indication that our nuclear plants are vulnerable to natural and manmade disasters at many points. And more American politicians should say just what DiFi said, instead of brushing off Japan’s already extant stark reminder as a “can’t happen here” event, or quickly forgetting Tuesday’s quake because it resulted in “minimal damage and no loss of life” (to use Feinstein’s own rosy words).

Feinstein continues by laying out four “lessons” that Japan and Virginia should teach us. (It is really more like two or three points with repeats, but that’s OK.) The headlines:

First, our country needs a comprehensive, national policy to address the management of spent fuel, the radioactive waste produced while generating electricity by fission.

Second, today’s efforts to protect against seismic and flooding hazards may not be sufficient.

Third, we must improve the redundant safety systems to respond to disasters.

Finally, for spent fuel stored at reactor sites, dry casks are safer and more secure than permanent storage in spent fuel pools.

Both the first and fourth points note that storing spent fuel in pools of circulating water is not a particularly safe, efficient, or cost-effective way of dealing with one of nuclear power generation’s biggest problems. Not only are these pools also dependent on an uninterrupted source of electricity to keep water circulating and levels high enough to keep the rods—now packed in at many times the pools’ original designed capacity—from overheating and melting themselves or cracking the water and triggering hydrogen explosions, the cooling systems for the pools are also vulnerable to seismic events.

Feinstein says that spent rods should be moved to dry casks and eventually to a secure repository, observing that spent fuel in Japan housed in dry casks had no problems after the March 11 quake and flood. Strangely, though, the senator cites the Nuclear Regulatory Commission’s special taskforce report on the aftermath of the Japanese disaster as the inspiration for making this call for dry casks and a national fuel repository—strange because, as both Physicians for Social Responsibility and I noted back when the report was released, the task force pointedly did not make any recommendations for moving spent fuel to dry casks or to off-site repositories.

Feinstein also says she has learned that protections against earthquakes and flooding may not be sufficient. Again, DiFi modifies—there is really no need to say “may” here. From Fukushima Daiichi to the reactors in Virginia known as North Anna 1 and 2, it should now be very clear that nuclear plants are walking a precarious line between “minimal damage” and catastrophic failure.

Let’s look more closely at what happened on Tuesday. A 5.8 earthquake centered 15 miles from the North Anna nuclear power generating facility cut electrical power to the plant. Backup diesel generators kicked in to provide power to the cooling systems, averting the overheating of either the reactor core or the pools of spent fuel. Good news, as far as it goes, but there are several disconcerting caveats.

First, we don’t know if the plant—which is theoretically designed to withstand a quake of a 6.2 magnitude—has actually emerged from Tuesday’s tremor completely unscathed. The reactors are currently being brought to a cold shutdown so that they may be inspected further. Not only must the containment vessels be more closely inspected, the cooling system must be tested for leaks. Some of the pipes and conduits for that system are underground. As reactor expert Paul Gunter has noted, an underground rupture, one that might be leaking radioactive tritium into ground water, is quite possible and needs to be investigated more fully.

(As a caveat to the caveat, I must note that we also need to find a way to verify that the public is being fully informed about any damage and radioactive leaks—not a sure thing in light of both the evolving story of cover-up in Japan and this summer’s expose on collusion between the NRC and the nuclear industry.)

Second, the North Anna plant gets its name from Lake Anna, an artificial lake created to provide a reservoir for the cooling requirements of the nuclear facility. What if the quake had caused the dam that holds the water in Lake Anna to rupture? Beyond the dangerous flooding to well-populated communities downstream, the water level in the reservoir would drop to a point where the nuclear plant’s cooling system would fail. If this were to happen, no amount of redundant power generation would fix the problem. Does this sound farfetched? It is not. Virginia is noteworthy for its lack of attention to its aging infrastructure—in fact, according to the American Society of Civil Engineers’ infrastructure report card [PDF], the condition of Virginia’s dams gets a D-minus.

(It should be noted that the initial inspection of the Lake Anna dam after Tuesday’s quake showed no new damage.)

Third, not all of North Anna’s backup generators worked on Tuesday. Only three of the four came online after power was lost. (Hooray for required redundancy.) What is not clear is what effect this had on the plant’s ability to function normally, or what would have happened if grid power had not been restored as quickly to the facility.

Fourth, there is emerging evidence that seismic activity can increase as the result of the pressure from dammed reservoirs, as well as from hydraulic fracturing (which has been going on in the vicinity of Tuesday’s epicenter).

And finally, to simply give a Richter scale number as a sort of assurance of the safety of a nuclear facility is overly simplistic if not downright deceptive. Here’s why:

As noted here today and before, there are many systems that have to survive an earthquake—the reactor containment vessel, its cooling system, the spent fuel pools, their cooling systems, the reactor building, the monitoring equipment, and a plant’s connection to a steady supply of electrical power. In theory, all these systems were evaluated when the plans for a nuclear facility were initially approved. They all should survive a quake of a specified magnitude.

However, all of America’s nuclear facilities were licensed during a time when regulators assessed designs based on what is called Deterministic Seismic Hazard Analysis (DSHA). But, as noted in a May Congressional Research Service report [PDF]:

Since then, Probabilistic Seismic Hazard Analysis (PSHA) has been adopted as a more comprehensive approach in engineering practice. Consequently, the NRC is reassessing the probability of seismic core damage at existing plants.

I am not an expert in plate tectonics, but what I read tells me that you would feel more secure with a PSHA-generated standard—and what I have learned from Fukushima is that I want that standard applied to all the systems needed to safely operate a nuclear power plant. But what this report tells me is that the NRC is only in the midst of some process of reevaluating plants’ seismic vulnerability—a process that was to have begun last year but has moved very slowly (and this is only the evaluation stage)—and that this re-evaluation is of the probability of core damage, which, to my eye, is not the same as an evaluation of every system needed for the reactor and the spent fuel pools to remain safe.

And I am not alone in my worries. Here’s the NRC itself after it looked at North Anna in April (via the Institute for Southern Studies and the Center for Public Integrity):

Specifically, the NRC report notes that portions of water and gaseous suppression systems and hose stations “are not seismically designed.”

The report noted that “potential leakage can occur through penetrations following seismic event.”

And with specific regard to the spent fuel pools, ISS continues:

There’s also concern about what a major quake would mean for the water-filled pools used to store spent fuel at most U.S. nuclear plants. Bob Alvarez, a senior scholar at the Institute for Policy Studies who recently authored a report on the dangers of spent fuel storage in the United States, addressed the issue in a piece on the IPS blog posted shortly after the quake:

The North Anna reactors are of the Westinghouse Pressurized Water design and went on line in 1979 and 1980 respectively. Since then the reactors have generated approximately 1,200 metric tons of nuclear spent fuel containing about 228,000 curies of highly radioactive materials — among the largest concentrations of radioactivity in the United States.

Alvarez went on to note that almost 40 percent of the radioactivity in North Anna’s spent fuel pools is in the form of cesium-137, a long-lived isotope that presents serious health risks and accumulates in the food chain. He continued:

The spent fuel pools at North Anna contain four to five times more spent fuel than their original designs intended. As in Japan, all U.S. nuclear power plant spent fuel pools do not have steel lined, concrete barriers that cover reactor vessels to prevent the escape of radioactivity. They are not required to have back-up generators to keep used fuel rods cool, if offsite power is lost. Even though they contain these very large amounts of radioactivity, spent reactor fuel pools in the United States are mostly contained in ordinary industrial structures designed to protect them against the elements.

This goes to explaining the confusion I see over whether just parts or the entirety of a nuclear facility is required to meet a specific earthquake safety standard. But what it doesn’t do is imply that a single, plant-wide standard will be used in the future.

As noted when the special task force report came out earlier this summer, the recommendation that the current patchwork of safety rules should be unified and standardized was actually being slow-walked by three of the five NRC commissioners. Finally, one week ago, the commission agreed to give its technical team 45 days to analyze some of the recommendations, but they will be given a full 18 months to analyze the recommendation that the NRC revise its entire regulatory framework in light of lessons learned after the Fukushima disaster.

It should also be noted that there is currently no law that requires the NRC to apply the new, better seismic standards when evaluating requests for license renewals or the building of additional reactors at existing facilities. (There is a bill, languishing in the House, designed to fix this. . . did I mention it was languishing?)

Which brings us back to Senator Feinstein, or, really, her California colleague, Sen. Barbara Boxer (D), who chairs the Committee on Environment and Public Works and has oversight responsibilities over the NRC. While DiFi has written about the lessons of this week’s Virginia quake, Boxer has demanded action on the NRC taskforce report on the lessons learned from Fukushima. At a hearing on August 2, Boxer demanded the NRC pick up the pace on evaluating the recommendations and report back to her by November. With the NRC’s decision on how it will move forward, and the latest in a lengthening string of “wakeup calls” having caused incidents at North Anna and a number of other eastern nuclear facilities, perhaps both of California’s Senators might consider official hearings before then.

It must also be mentioned that while I was writing this post, Japan’s Prime Minister, Naoto Kan, has stepped down. Stories on the resignation concurrently cite his dismal poll numbers from an anti-nuke electorate, and the lack of support from pro-nuclear members of his party. Kan, who had previously hinted at leaving after the Fukushima crisis was brought under control (it seems I correctly predicted he’d be gone well before that), has also signaled that he wanted to wean Japan off nuclear power for electrical generation and move more aggressively toward renewable sources. Both possible reasons for his early exit speak to some form of accountability—one to the public, the other to entrenched nuclear industry masters—and both have probably played some roll. But what matters going forward is to whom the next leader will answer, and what happens with Japanese nuclear facilities will make that very clear.

In the US, we have a less clear choice—no one has proposed a move away from nuclear power (quite the contrary)—which, alas, probably tells us who calls the shots in our country. But that ugly political reality doesn’t change the physical one—United States nuclear facilities remain vulnerable to numerous seismic and tidal threats. As Diane Feinstein concludes, “We need to learn the lessons we can to assure that next time we are ready—not just lucky.”