Writing on Shooting: Over Five Years Later, What Has Changed?

(photo: An Nguyen Photography via Flickr)

(photo: An Nguyen Photography via Flickr)

It has been over five-and-a-half years since a mass shooting on the campus of Virginia Tech in Blacksburg, Virginia, caused me to write:

. . . the terrible truth is that we only pay attention when our domestic murders come in multiples.

Gun violence is more than an everyday occurrence in this country, it is an hourly one. Correction: it is a quarter-hourly one. There are, roughly, 12,000 gun murders a year in the United States (if you are looking for contrasts, contrast that with the average 350 gun murders that occur annually in Canada, Great Britain, and Australia combined). If you watch the local TV news in the US, then you likely bear some sort of witness to numerous individual gun murders every week.

But it is only when six or twelve or twenty-two or thirty-three are shot that most of us even look up, take pause, or stop to think at all about what guns do.

And what guns do is kill people.

I’m sure there is somebody out there right now that is raising a finger in protest. Wait, there’s sport. . . competition shooting. . . hunting! And to that person I say: Knock it off! AK-47’s and their clones are not prized by biathletes, 9 mm semi-automatics are not hunting weapons, and you don’t need an extended clip to bring down a sixteen-point buck. You can make your arguments about self-defense and Second Amendment rights (though most of them would be wrong), but you cannot argue that it is either a right or a necessity to own the kinds of weapons that felled those at Columbine, or West Nickel Mines, or the unfortunate students and faculty at Virginia Tech.

And now we can add Sandy Hook Elementary in Newtown, Connecticut to that list–a list that had already grown much, much longer since 2007.

I wrote several posts around the time of the VaTech shootings–and several others about sadly similar events over the years–and went back to read them while thinking I would scrawl something today about the massacre in Connecticut. But you know what? I’m not sure I see the point of a new story–not when almost every single word I wrote back then is just as applicable now.

Sure, some of the names have changed. We have a different president; one who arguably struck the right emotional tone as he joined the country in mourning the senseless deaths of 20 young children. But a little while before Barack Obama spoke to the nation, his press secretary, Jay Carney, took to the White House briefing room to say that today was not the day to address the role that gun laws could play in preventing more mass shootings.

So, if you have the time, take a look at part of what was said some 17 domestic gun massacres ago:

Then, maybe ask, who do we have in elected government, or in a visible place in our country or our communities, who will rise up and say to Mr. Carney, or to the press corps, or to the president, “How about now? Can we talk about it now?”

I’ll leave you with the questions I asked back in 2007–and have asked so many times since–in an attempt to actually move this discussion beyond pearl-clutching and platitudes:

To those that love their guns. . .

Please don’t resort to screaming about how I want to take away your guns. . . I don’t. Just tell me why you oppose:

Gun registration,
Better background checks,
Additional licensing procedures for concealed weapons,
Mandatory waiting periods,
Restrictions on assault-style weapons, Saturday night specials, and extended clips,
Mandatory safety training and periodic recertification,
Closing so-called gun-show loopholes,
Legal liability for gun manufacturers commensurate with other consumer product liability,
And limits on the number of guns and rounds of ammo you can purchase at any given time and over the course of a year.

If you can address those points, we can have a discussion. . . or you can just scream that I want to take away your gun again if that makes you feel better.

And one more thought–something I tweeted earlier. Today, before the news of the Connecticut shooting broke, I heard a story about a man who went on a violent rampage at a school in China. He was armed with a knife. The result: 22 wounded; 0 dead.

Oyster Creek Nuclear Alert: As Floodwaters Fall, More Questions Arise

Oyster Creek Nuclear Generating Station in pre-flood mode. (photo: NRCgov)

New Jersey’s Oyster Creek Nuclear Generating Station remains under an official Alert, a day-and-a-half after the US Nuclear Regulatory Commission declared the emergency classification due to flooding triggered by Hurricane Sandy. An Alert is the second category on the NRC’s four-point emergency scale. Neil Sheehan, a spokesman for the federal regulator, said that floodwaters around the plant’s water intake structure had receded to 5.7 feet at 2:15 PM EDT Tuesday, down from a high of 7.4 feet reached just after midnight.

Water above 6.5 to 7 feet was expected to compromise Oyster Creek’s capacity to cool its reactor and spent fuel pool, according to the NRC. An “Unusual Event,” the first level of emergency classification, was declared Monday afternoon when floodwaters climbed to 4.7 feet.

Though an emergency pump was brought in when water rose above 6.5 feet late Monday, the NRC and plant owner Exelon have been vague about whether it was needed. As of this writing, it is still not clear if Oyster Creek’s heat transfer system is functioning as designed.

As flooding continued and water intake pumps were threatened, plant operators also floated the idea that water levels in the spent fuel pool could be maintained with fire hoses. Outside observers, such as nuclear consultant Arnie Gundersen, suspected Oyster Creek might have accomplished this by repurposing its fire suppression system (and Reuters later reported the same), though, again, neither Exelon nor regulators have given details.

Whether the original intake system or some sort of contingency is being used, it appears the pumps are being powered by backup diesel generators. Oyster Creek, like the vast majority of southern New Jersey, lost grid power as Sandy moved inland Monday night. In the even of a site blackout, backup generators are required to provide power to cooling systems for the reactor–there is no such mandate, however, for spent fuel pools. Power for pool cooling is expected to come either from the grid or the electricity generated by the plant’s own turbines.

As the NRC likes to remind anyone who will listen, Oyster Creek’s reactor was offline for fueling and maintenance. What regulators don’t add, however, is that the reactor still needs cooling for residual decay heat, and that the fuel pool likely contains more fuel and hotter fuel as a result of this procedure, which means it is even more at risk for overheating. And, perhaps most notably, with the reactor shutdown, it is not producing the electricity that could be used to keep water circulating through the spent fuel pool.

If that sounds confusing, it is probably not by accident. Requests for more and more specific information (most notably by the nuclear watchdog site SimplyInfo) from Exelon and the NRC remain largely unanswered.

Oyster Creek was not the only nuclear power plant dealing with Sandy-related emergencies. As reported here yesterday, Nine Mile Point Unit 1 and Indian Point Unit 3–both in New York–each had to scram because of grid interruptions triggered by Monday’s superstorm. In addition, one of New Jersey’s Salem reactors shut down when four of six condenser circulators (water pumps that aid in heat transfer) failed “due to a combination of high river level and detritus from Hurricane Sandy’s transit.” Salem vented vapor from what are considered non-nuclear systems, though as noted often, that does not mean it is completely free of radioactive components. (Salem’s other reactor was offline for refueling.)

Limerick (PA) reactors 1 and 2, Millstone (CT) 3, and Vermont Yankee all reduced power output in response to Superstorm Sandy. The storm also caused large numbers of emergency warning sirens around both Oyster Creek and the Peach Bottom (PA) nuclear plant to fail.

If you thought all of these problems would cause nuclear industry representatives to lay low for a while, well, you’d be wrong:

“Our facilities’ ability to weather the strongest Atlantic tropical storm on record is due to rigorous precautions taken in advance of the storm,” Marvin Fertel, chief executive officer of the Nuclear Energy Institute, a Washington-based industry group, said yesterday in a statement.

Fertel went on to brag that of the 34 reactors it said were in Sandy’s path, 24 survived the storm without incident.

Or, to look at it another way, during a single day, the heavily populated eastern coast of the Unite States saw multiple nuclear reactors experience problems. And that’s in the estimation of the nuclear industry’s top lobbyist.

Or, should we say, the underestimation? Of the ten reactors not in Fertel’s group of 24, seven were already offline, and the industry is not counting them. So, by Fertel’s math, Oyster Creek does not figure against what he considers success. Power reductions and failed emergency warning systems are also not factored in, it appears.

This storm–and the trouble it caused for America’s nuclear fleet–comes in the context of an 18-month battle to improve nuclear plant safety in the wake of the multiple meltdowns and continuing crisis at Japan’s Fukushima Daiichi nuclear facility. Many of the rules and safety upgrades proposed by a US post-Fukushima taskforce are directly applicable to problems resulting from Superstorm Sandy. Improvements to flood preparation, backup power regimes, spent fuel storage and emergency notification were all part of the taskforce report–all of which were theoretically accepted by the Nuclear Regulatory Commission. But nuclear industry pushback, and stonewalling, politicking and outright defiance by pro-industry commissioners has severely slowed the execution of post-Fukushima lessons learned.

The acolytes of atom-splitting will no doubt point to the unprecedented nature of this massive hybrid storm, echoing the “who could have predicted” language heard from so many after the earthquake and tsunami that started the Fukushima disaster. Indeed, such language has already been used–though, granted, in a non-nuclear context–by Con Edison officials discussing massive power outages still afflicting New York City:

At a Consolidated Edison substation in Manhattan’s East Village, a gigantic wall of water defied elaborate planning and expectations, swamped underground electrical equipment, and left about 250,000 lower Manhattan customers without power.

Last year, the surge from Hurricane Irene reached 9.5 feet at the substation. ConEd figured it had that covered.

The utility also figured the infrastructure could handle a repeat of the highest surge on record for the area — 11 feet during a hurricane in 1821, according to the National Weather Service. After all, the substation was designed to withstand a surge of 12.5 feet.

With all the planning, and all the predictions, planning big was not big enough. Sandy went bigger — a surge of 14 feet.

“Nobody predicted it would be that high,” said ConEd spokesman Allan Drury.

In a decade that has seen most of the warmest years on record and some of the era’s worst storms, there needs to be some limit on such excuses. Nearly a million New York City residents (including this reporter) are expected to be without electricity through the end of the week. Residents in the outer boroughs and millions in New Jersey could be in the dark for far longer. Having a grid that simply survives a category 1 hurricane without a Fukushima-sized nuclear disaster is nothing to crow about.

The astronomical cost of restoring power to millions of consumers is real, as is the potential danger still posed by a number of crippled nuclear power plants. The price of preventing the current storm-related emergencies from getting worse is also not a trivial matter, nor are the radioactive isotopes vented with every emergency reactor scram. All of that should be part of the nuclear industry’s report card; all of that should raise eyebrows and questions the next time nuclear is touted as a clean, safe, affordable energy source for a climate change-challenged world.

UPDATE: The AP is reporting that the NRC has now lifted the emergency alert at Oyster Creek.

Alert Declared at Oyster Creek Nuclear Plant

Oyster Creek Nuclear Generating Station (photo courtesy of NRC)

The US Nuclear Regulatory Commission is reporting that an “alert” has been declared at the Oyster Creek Nuclear Generating Station in Ocean County, New Jersey. An alert is the second level on the four-point scale, a step above an “unusual event.”

The NRC declared the alert at 8:45 PM local time, as a combination of rising tides, wind and the storm surge from Hurricane Sandy caused water to rise above safe levels in the plant’s water intake structure. Sandy, which made landfall at around 8 PM in southern New Jersey with 90 mph winds, has caused power outages and widespread flooding along the Atlantic coast from Maryland to New York.

Oyster Creek is the oldest operating commercial reactor in the US. It is a GE boiling water reactor of similar design to the ones that failed in Fukushima, Japan during 2011’s Tohoku earthquake, though Oyster Creek is actually older. As Sandy moved up the coast, fears were raised about several nuclear facilities in the storm’s path. The NRC had issued no specific directives in advance of the hurricane, though extra inspectors were dispatched to threatened plants early on Monday.

Particular concerns were raised about Oyster Creek. The reactor is currently offline for maintenance, which means all the reactor fuel, along with generations of used fuel, is in the plant’s spent fuel pools. The plant itself is not generating any electricity, and so is dependent on external power. If the power were to fail, there would be no way to circulate cooling water through the pools.

Backup diesel generators typical to this design power the heat transfer from the reactor, but the so-called “defense in depth” backups for the spent fuel pools are the plant’s own electrical output and power from an external grid.

Flooding of the coolant intake structure further complicates matters. Oyster Creek does not have a cooling tower (like those seen in classic pictures of Three Mile Island). Safe temperatures are maintained by taking in massive amounts of water from a nearby source (in this case, Barnegat Bay). Water must continue to circulate in and out of the facility to keep temperatures at safe levels.

Another question would be whether floodwaters would carry additional radioactive contamination into Barnegat Bay as they recede.

In the NRC press release on Oyster Creek (PDF), the regulator also noted (with apparent pride) that no reactors had been shut down because of Hurricane Sandy. However, at least one reactor, Millstone 3 in Connecticut, had reduced output in anticipation of the storm. Several other reactors in the region are currently offline for refueling or maintenance.

Hurricane Sandy Brings Wind, Rain and Irony to US Nuclear Plants

Hurricane Sandy’s projected path as of 9 AM, Monday. (map courtesy of NOAA)

With Hurricane Sandy projected to make landfall hundreds of miles to the south and the predicted storm surge still over 24 hours away, New York City completely shuttered its mass transit system early Sunday evening. By 7 PM, all subway service was halted for only the second time in history. The fear, according to state authorities, is that heavy rainfall or the expected six-to-eleven-foot increase in tide levels would flood subway tunnels, stranding trains at various points across the 842 miles of track.

Fearing similar flooding, the Washington, DC, Metro is also expected to suspend service for all of Monday.

Twelve hours after NYC shut down its subways, at 7 AM Monday, with Hurricane Sandy lashing the Mid-Atlantic coast with heavy rain and 85 mph winds, at least a half-dozen commercial nuclear reactors lie in the storm’s projected path–and the US Nuclear Regulatory Commission has yet to issue any specific orders to the facilities it supposedly oversees. In fact, check out the NRC’s twitter feed or look at its website, and the only reference you will find to what has been dubbed “Frankenstorm” is the recently posted cancellation notice for a public hearing that was supposed to convene on Tuesday, October 30.

The subject of that meeting? The Fort Calhoun Nuclear Generating Station.

The Fort Calhoun plant sits on the Missouri River, on the eastern edge of Nebraska, near the town of Blair. Fort Calhoun’s single pressurized water reactor was shutdown for refueling in April of last year, but floods during the summer of 2011 encircled the facility and caused a series of dangerous incidents. A breach in water berms surrounded transformers and auxiliary containment buildings with two feet of water. Around that same time, a fire shut down power to Fort Calhoun’s spent fuel pools, stopping the circulation of cooling water for 90 minutes and triggering a “red event,” the second most severe classification. Outside of its reactor, the Nebraska facility is home to approximately 800,000 pounds of high-level radioactive waste. To this day, Fort Calhoun is offline and awaiting further evaluation by the NRC.

That a hearing on a flooded plant has been postponed because of the threat of flooding near NRC offices seems like the height of irony, but it pales next to the comparison of safety preparedness measures taken by New York’s Metropolitan Transit Authority for a subway and the federal government’s approach to a fleet of nuclear reactors.

That is not to say that the NRC is doing nothing. . . not exactly. Before the weekend, regulators let it be known that they were considering sending extra inspectors to some nuclear facilities in Sandy’s path. Additionally, regional officials stressed that plant operators were doing walk downs to secure any outside equipment that might become a sort of missile in the event of high winds. It is roughly the equivalent of telling homeowners to tie down their lawn furniture.

And it seems to be understood, at least at the nuclear plants in southern New Jersey, that reactors should be shutdown at least two hours before winds reach 74 mph.

To all that, the NRC made a point of assuring the public that reactor containment buildings could withstand hurricane-force winds, or any odd piece of “lawn furniture” that might be hurled at them.

That’s nice, but hardly the point.

Containment breech is always a concern, but it is not the main issue today. A bigger worry are SBOs–Station Black Outs–loss-of-power incidents that could impede a plant’s capacity to cool its reactors or spent fuel pools, or could interfere with operators’ ability to monitor everything that is going on inside those areas.

As reported last year, Hurricane Irene caused an emergency shutdown at Maryland’s Calvert Cliffs nuclear plant when aluminum siding torn off by high winds shorted out the main transformer and caused an explosion, damaging structures and equipment. Calvert Cliffs was one of the facilities that had chosen not to reduce output or shutdown in advance of Irene–especially alarming because just days before that storm, plant operators had reported trouble with its diesel backup generators.

Irene caused other problems, beyond loss of electricity to millions of consumers, public notification sirens in two emergency preparedness zones were disabled by the storm.

In sum, storm damage triggered a scram at a plant with faulty backup generators. If power had not been restored, backup would have failed, and the rising temperatures in the reactors and fuel pools would have necessitated an evacuation of the area–only evacuation would have been hampered because of widespread power outages and absent sirens.

The worst did not happen last year at Calvert Cliffs, but the damage sustained there was substantial, and the incident should serve as a cautionary tale. Shutting down a nuclear reactor doesn’t prevent every problem that could result from a severe storm, but it narrows the possibilities, reduces some dangers, and prevents the excessive wear and tear an emergency shutdown inflicts on an aging facility.

Calvert Cliffs is again in the line of fire–as are numerous other plants. Hurricane Sandy will likely bring high winds, heavy rain and the threat of flooding to nuclear facilities in Virginia, Maryland, New Jersey, New York and Connecticut. Given last year’s experiences–and given the high likelihood that climate change will bring more such events in years to come–it might have been expected that the NRC would have a more developed policy.

Instead, as with last year’s Atlantic hurricane, federal regulators have left the final decisions to private sector nuclear operators–operators that have a rather poor track record in evaluating threats to public safety when actions might affect their bottom line.

At the time of this writing, the rain in New York City is little more than a drizzle, winds are gusting far below hurricane strength, and high tide is still over ten hours away. Hurricane Sandy is over 300 miles to the south.

But Gotham is a relative ghost town. The subway turnstiles are locked; city busses are nowhere to be seen.

At the region’s nuclear facilities, however–at North Anna, Hope Creek, Salem and Oyster Creek, at Calvert Cliffs, Indian Point and Millstone–there is no such singular sense of better-safe-than-sorry mission.

In New York, it can be argued that the likes of Governor Andrew Cuomo and Mayor Michael Bloomberg have gone overboard, that they have made decisions based not just on safety, but on fears of political fallout and employee overtime. But in the Nuclear Regulatory Commission’s northeast region, there is no chance of that kind of criticism–one might even say there is no one to criticize, because it would appear that there is no one in charge.

End-of-Summer News Puts Nuclear Renaissance on Permanent Vacation

Calvert Cliffs Nuclear Power Plant, Units 1 & 2, near Lusby Maryland. (photo: NRCgov)

The Nuclear Regulatory Commission cannot issue a license for the construction and operation of a new nuclear reactor in Maryland–that is the ruling of the NRC’s Atomic Safety and Licensing Board (ASLB) handed down Thursday.

In their decision, the ASLB agreed with intervenors that the Calvert Cliffs 3 reactor project planned for the shores of Chesapeake Bay violated the Atomic Energy Act’s prohibition against “foreign ownership, control, or domination.” UniStar, the parent company for the proposal, is wholly owned by French energy giant Électricité de France (EDF).

EDF had originally partnered with Constellation Energy, the operator of two existing Calvert Cliffs reactors, but Constellation pulled out of the project in 2010. At the time, Constellation balked at government requirements that Constellation put $880 million down on a federal loan guarantee of $7.6 billion (about 12 percent). Constellation wanted to risk no more than one or two percent of their own capital, terms the feds were then willing to meet if Constellation and EDF could guarantee the plant’s completion. Constellation also found that requirement too onerous.

Constellation has since been purchased by Exelon.

The ASLB decision technically gives EDF 60 days to find a new American partner, but given the history and the current state of the energy market, new suitors seem highly unlikely. It marks only the second time a license has been denied by the ASLB. (The first, for the Byron, Illinois plant in 1984 was overturned on appeal. Byron opened the next year, and Illinois’s groundwater has never been the same.) The NRC also declined to grant a license to the South Texas Project late last year when US-based NRG Energy (corporate ID courtesy of the Department of Redundancy Department) pulled out of the project, leaving Japanese-owned Toshiba as the only stakeholder.

The Calvert Cliffs intervenors were led by the Nuclear Information and Resource Service (NIRS), which has been fighting Calvert Cliffs 3 almost since its inception. NIRS was joined by Beyond Nuclear, Public Citizen and Southern Maryland CARES.

Michael Mariotte, Executive director of NIRS, called Thursday’s decision “a blow to the so-called ‘nuclear renaissance,'” noting that back in 2007, when permit requests were submitted for Calvert Cliffs 3, the project was considered the “flagship” of a coming fleet of new reactors. “Now,” said Mariotte, “it is a symbol for the deservedly failed revival of nuclear power in the US.”

A symbol, yes, but far from the only symbol.

Earlier in the week, Exelon notified the Nuclear Regulatory Commission that it would withdraw its application for an “early site permit” for a proposed nuclear facility near Victoria, Texas. A combined construction and operating license was originally sought for two reactors back in 2008, but by 2010, with demand down and nuclear costs continuing to skyrocket, Exelon backed off that request, essentially downgrading it to “just keeping a toe in the water” status.

Now, with the price of a new nuke plant climbing higher still–even though the economy remains sluggish–and with natural gas prices continuing to fall, that toe has been toweled dry. “Today’s withdrawal brings an end to all project activity,” said an Exelon statement issued Tuesday.

And on Monday, the operators of the troubled San Onofre Nuclear Generating Station let it be known that they would start removing the radioactive fuel from Unit 3 sometime in September. Unit 3 has been offline since it scrammed after a heat exchange tube leaked radioactive steam at the end of January. Later inspection revealed that numerous tubes on the unit, as well as on its previously shut-down twin, showed alarming and dangerous amounts of wear.

Removing the fuel rods all-but-confirms what most experts already knew: SONGS 3 will never come back online. Southern California Edison, the plant’s majority operator, might not want to admit that, but earlier in August, SCE announced plans for 730 layoffs, roughly a third of the plant’s workforce. That size of reduction makes repairing, testing and restarting both San Onofre reactors unfeasible. Or, to look at it through the other end of the telescope, as David Lochbaum, director of the Union of Concerned Scientists put it, “reducing the scope of required work at the jobsite is a good thing to do before discharging workers.”

Mothballing Unit 3 will reduce the workload, but with the entire facility offline for most of this year, SONGS is already an economic sinkhole. Strangely, despite failing to generate a single kilowatt of energy in eight months, SCE and co-owner San Diego Gas & Electric have continued to collect $54 million of revenue every month from California ratepayers.

The California Public Utilities Commission has to investigate rate cuts when a plant fails to deliver for nine months (so, officially, November and December, for the two SONGS reactors), but that process would start sooner if it were determined that a reactor would never come back into service. Neither San Onofre reactor will restart before the end of the year, and it is now clearer than a San Diego summer sky that the number 3 reactor never will. Scientists know this, engineers know this, utilities commissioners know this, and even Southern California Edison knows this–but SCE won’t say it because that would hasten the start of rate rollbacks.

Calvert Cliffs being in the news this time of year also calls to mind how well nuclear plants do in hurricanes. . . as in, not very well at all. Last year, as Hurricane Irene marched up the Atlantic coast, the two existing reactors at Calvert Cliffs had to scram when a dislodged piece of siding caused a short in the main transformer and an “unanticipated explosion within the Protected Area resulting in visible damage to permanent structures or equipment.”

As fate would have it, this year’s “I” storm, Isaac, necessitated the shutdown of Entergy’s Waterford plant, outside of New Orleans. In fact, many plants are required to shutdown when facing winds in excess of 74 mph, “rendering them,” as Beyond Nuclear put it, “a liability, rather than an asset during a natural disaster.”

And Hurricane Isaac was but one possible symptom of a warming climate that has proven problematic for nuclear plants this summer. Braidwood, Illinois and Millstone in Connecticut had to curtail output or temporarily shutdown this summer because the source water used for cooling the reactors rose above prescribed limits. With summer temperatures expected to climb even more in coming years–and with droughts also anticipated–incidents like these (and like those at Hope Creek, New Jersey, and Limerick, Pennsylvania, in 2010) will become more frequent, leaving nuclear power less able to deliver electricity during the months when it is most in demand.

Of course, the summer of 2012 has also had its share of what might be called “classic” nuclear plant problems–power supply failures, radioactive leaks, and other so-called “unusual incidents.” One of the most recent, yet another accident at Palisades in Michigan:

On Sunday [August 12], Palisades shut down due to a leak of radioactive and acidic primary coolant, escaping from safety-critical control rod drive mechanisms attached to its degraded lid, atop its “worst embrittled reactor pressure vessel in the U.S.”

And all of the above has happened during a summer when the NRC finally acknowledged (or, more accurately, when a federal court ordered the NRC to acknowledge) that it could no longer pretend the US had a solution for its nuclear waste storage crisis. The commission has stopped issuing new operating licenses, license extensions and construction licenses until it can craft a plan for dealing with the mountains of spent nuclear fuel continuing to accumulate at nuclear facilities across the country.

So, there is no nuclear renaissance. There wasn’t one before this summer–there wasn’t even one before everyone came to know about the Fukushima disaster. The dangers and costs that have followed nuclear power since its inception have firmly branded it as a technology of the past. The events of 2011 and 2012 have provided more evidence that nuclear power is done as a meaningful energy proposition. The sooner America can also be done with the myth of a possible, sometime, “who knows when,” “maybe next year” nuclear renaissance, the sooner the federal government can stop propping up the unsafe and unviable nuclear industry. And the sooner the US can begin a real technological and economic rebirth.

The Party Line – September 23, 2011: In Post-Fukushima Reality, What is the Future, and Who is Winning It?

Beginning a story with a correction for what might seem a technical detail might not provide the most attention-grabbing lede, but it opens the door to a broader, and important, observation.

Last week’s column contained reference to “large nuclear power-generating nations,” and then listed Australia as part of that group. That, as pointed out by reader Dgdonovan, was incorrect:

Australia is not a large nuclear power producing nation, in fact none of Australia’s electricity is produced by nuclear power. Australia is a large uranium producing nation, however.

Indeed, while Australia may posses nearly a quarter of the world’s remaining uranium deposits, it has not commissioned a single industrial-scale nuclear reactor for electrical power generation. While the ongoing crisis at Japan’s Fukushima Daiichi plant makes that look prudent, given the expansion of nuclear power over the last 50 years, it does seem odd.

Australia is hardly an industrial backwater. A member of the G20, Australia is the world’s 13th largest economy in terms of GDP. And it is not as if Australia has not considered building nuclear plants, most recently about five years ago. But nuclear power has never gotten off the ground in Australia for a rather basic reason: it is not supported by a majority of its people.

What the public wants, however, (as some recent events in the US seem to indicate) is not always what the public gets. Also required is a mechanism for the electorate to impose their will.

As previously observed, in the aftermath of the Japanese disaster, German Prime Minister Angela Merkel committed her country to phasing out nuclear power generation in relatively short order, choosing to instead invest in renewables and efficiency. Merkel may have come to this decision based on the facts as now understood post Fukushima, but German domestic politics almost certainly came under consideration, too.

Merkel’s ruling coalition in the Bundestag currently includes her own party, the Christian Democrats (CDU), and the rightwing Free Democratic Party (FDP). By every indication, the FDP is heading for substantial losses in the next federal election, so the CDU will need a new coalition partner to keep Merkel in power. The most productive option is expected to be the Greens, and to woo them, Merkel found an opportune moment to move on a core Green Party issue.

Australia’s system is not identical to Germany’s, but the parliamentary (or Westminster) plan of the lower house introduces some of the same power dynamics. (Liberal-National Coalition PM John Howard proposed developing nuclear power in 2006; his party lost to anti-nuke Labor in 2007.) Federal and most regional elections are also decided by “preferential voting” (also known as IRV, or “instant runoff”). This form of democracy tends to give voters more options, and allows tertiary parties, and their issues, to gain a foothold in the system. Australia also accords a great deal of autonomy to its six state governments, where, for instance, it would be virtually impossible for the federal Australian government to put a nuclear power plant in a state if that state’s government had rejected it.

Contrast this with the United States, where, rather than responding to the new, post-Fukushima realities, the Nuclear Regulatory Commission has signaled it is “full speed ahead” on the relicensing of old nuclear facilities (many of which are nearly identical to the Fukushima reactors; all of which are reaching the ends of their projected lifespans). Seabrook, in Connecticut New Hampshire, has just been granted permission to proceed toward relicensing, and it looks like re-upping the Massachusetts Pilgrim plant will also be moving ahead. This movement runs counter to the NRC’s own recent task force report advocating a new safety regime that incorporates lessons learned from Japan. And this relicensing also runs counter to substantial objections from state governments, nuclear watchdogs, and community activists.

Shouldn’t the chief regulatory agency wait until its new, proposed regulations are in place before giving out licenses for another 20 years of potentially dangerous operation? Under a governmental system that draws its regulators from the industry it regulates and funds its two-party, first-past-the-post elections with money from that industry, it appears not.

And regulatory protocol is not the only point of contrast. In Germany, the marketplace has already recognized the changing reality. Siemens, a German industrial giant, has announced that it is getting out of the nuclear power business:

It [Siemens] will build no further nuclear plants and is canceling its nuclear joint venture with Russia’s Rosatom. Siemens built all 17 of Germany’s existing nuclear plants. Siemens chief executive, Peter Loescher, (pictured) praised the Merkel government’s decision to close all its nuclear plants by 2022 and aim for an 80% to 100% renewable energy economy by 2050, calling it “a project of the century.”

Siemens recognizes that without government support, and without an automatic customer, there is no profit in nuclear power.

In the United States, where President Obama (a beneficiary of large campaign contributions from nuclear power companies) went out of his way to affirm the US commitment to nuclear generation immediately following the Japanese quake and tsunami, and where the federal government continues to offer loan guarantees for maintaining and operating nuclear plants, a very different picture is emerging:

Exelon Corporation and Constellation Energy have filed for Federal Energy Regulatory Commission (FERC) approval of their proposed merger. In the filing, the companies commit themselves to divesting three of Constellation’s non-nuclear power plants totaling [sic] 2648 MWe in a step to ensure the merger will not cause power market or competitive concerns in the PJM (Pennsylvania, Jersey, Maryland) Power Pool in which they operate.

Constellation is the owner of the Calvert Cliffs nuclear facility in Maryland, which has recently come under scrutiny (OK, closer scrutiny, it has a long history of safety concerns) because of an emergency shutdown triggered by a transformer explosion during Hurricane Irene. Exelon, itself the product of a merger brokered by former White House Chief of Staff and current Chicago Mayor Rahm Emanuel, was one of Barack Obama’s largest campaign contributors. Exelon already operates more US nuclear plants than any other power company.

And this isn’t the only consolidation move in the US power sector. Duke Energy and Progress Energy, companies that operate nuclear facilities throughout the southeast, are seeking to form the country’s largest electric utility.

The Exelon-Constellation deal is facing opposition from Maryland’s Governor, Martin O’Malley, while the Duke-Progress merger has raised questions in North Carolina. But the final say on whether either deal goes through rests with FERC, the Federal Energy Regulatory Commission.

FERC is comprised of five commissioners, each appointed by the president to a five-year term (in theory, anyway–one commissioner is still there, despite his term supposedly ending in June). As currently constituted, three members are George W. Bush appointees, two were picked by President Obama (though that does not necessarily predict how they will act). FERC’s decisions are final, and are not subject to any kind of Congressional vote.

The differences are stark. In Germany, where electoral realities have forced to the government to take an honest look at nuclear safety, market realities have delineated a path away from nuclear power and toward a renewable energy economy. In the US, where government is not only insulated from popular opinion but also beholden to corporate largess, elected officials, regulators and industry work hand-in-hand to perpetuate dangerous, expensive and inefficient technologies (while, on Capitol Hill, House Republicans vote to slash already threadbare programs meant to encourage renewable energy development).

In an age where so many economies are desperately trying not to lose any more ground in the present, could it be that the ones more responsive to their rank-and-file electorates are the ones in the best position to (to borrow a quickly forgotten phrase) win the future?